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Abstract—We present a probabilistic approach to characterize
heterogeneous disease in a way that is reflective of disease
severity. In many diseases, multiple subtypes of disease present
simultaneously in each patient. Generative models provide a
flexible and readily explainable framework to discover disease
subtypes from imaging data. However, discovering local image
descriptors of each subtype in a fully unsupervised way is an ill-
posed problem and may result in loss of valuable information
about disease severity. Although supervised approaches, and
more recently deep learning methods, have achieved state-of-
the-art performance for predicting clinical variables relevant to
diagnosis, interpreting those models is a crucial yet challenging
task. In this paper, we propose a method that aims to achieve the
best of both worlds, namely we maintain the predictive power
of supervised methods and the interpretability of probabilistic
methods. Taking advantage of recent progress in deep learn-
ing, we propose to incorporate the discriminative information
extracted by the predictive model into the posterior distribution
over the latent variables of the generative model. Hence, one
can view the generative model as a template for interpretation
of a discriminative method in a clinically meaningful way. We
illustrate an application of this method on a large-scale lung
CT study of Chronic Obstructive Pulmonary Disease (COPD),
which is a highly heterogeneous disease. As our experiments show,
our interpretable model does not compromise the prediction
of the relevant clinical variables, unlike purely unsupervised
methods. We also show that some of the discovered subtypes
are correlated with genetic measurements suggesting that the
discovered subtypes characterize the underlying etiology of the
disease.

Index Terms—Interpretable Models, Disease Subtyping, Varia-
tional Inference, Neural Network, Generative Model, Discrimina-
tive Model, Probabilistic Graphical Model, Chronic Obstructive
Pulmonary Disease, COPD.

I. INTRODUCTION

Characterizing the heterogeneity of diseases is essential
in understanding their etiology [1], improving prediction of
patient survival [2], and guiding patient treatment [3], [4].
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However, it is a challenging problem since there are many
sources of variation at the patient and population-level. It is
essential to define heterogeneity objectively such that it is
reflective of disease severity. In this paper, we propose to
build a generative model to explain variations in the patient
and population levels. To ensure the explanation is predictive
of disease severity, we train a predictive model that interacts
with the generative model in a novel way. We apply our
approach in the context of Chronic Obstructive Pulmonary
Disease (COPD), which is a highly heterogeneous disease [5],
[6].

COPD, which is characterized by inflammation of the
airway and destruction of the air sacs (emphysema) [7], is
the leading cause of death worldwide [8], [9]. There are dif-
ferences between risk factors of different COPD subtypes [10],
and hence understanding subtypes is important. Respirometry
measurement is used for the diagnosis of COPD; however,
it cannot identify the underlying process of COPD. Hence,
computed tomography (CT) imaging, which allows direct
qualitative and quantitative evaluation of tissue destruction,
is routinely requested for COPD patients. For example, phe-
notypic abnormality of emphysema is evident from CT im-
ages [11], [12]. Although there has been significant work
on defining visual subtypes of emphysema [12]-[19] from
CT images, there is significant intra-reader and inter-reader
variability of visual subtypes [20], [21]. In this paper, we aim
at the discovery of visual subtypes in a data-driven way so
that they are reflective of disease severity.

Various unsupervised subtype discovery methods have been
proposed. Image-based phenotype discovery in CT images via
spatial texture patterns have been explored in emphysema [14],
[15]. Ross et al. [12] propose a generative graphical model that
incorporates patient trajectories to identify disease subtypes
for COPD. Binder et al. [20] present a generative model for
unsupervised discovery of visual subtypes for COPD along
with inferring population structure. Their method identifies
sub-populations and clusters of image pattern simultaneously.
One of the underlying assumptions of these methods is that the
patient population can be divided into sub-populations, which
is disputed for COPD [22]. Furthermore, these methods are
unsupervised — solving a highly ill-posed problem — hence,
the resulting subtypes may not reflect disease severity.

On the other hand, many supervised methods have been
proposed to characterize the severity of lung diseases from CT
images [11], [16]-[19]. These methods study local descriptors
such as local binary pattern (LBP) [17], wavelet and gray-level
features [18] as well as various predictive methods ranging
from k—nearest neighbor classifier [17] to Support Vector



Machine (SVM) [11]. However, it is not clear how these
methods can inform subtype discovery. Furthermore, thanks
to advances in deep learning, the field is shifting toward less
generic and more task-specific local descriptors [23], [24]
which are more challenging to incorporate with subtyping
approaches.

Our proposed approach is different from the previous works
in two directions: (1) Rather than modeling the disease cohort
into sub-populations, we view it as a continuum. We aim at
discovering sub-processes across the disease cohort; each pa-
tient is a mixture of these sub-processes. We assume that these
sub-processes are manifested in the CT images. We use a prob-
abilistic generative approach for modeling, where the image
signature of the subtypes and the patient-specific mixture are
latent variables. (2) To ensure that discovered sub-processes
are related to the disease severity and not just anatomical
variation, we proposed a novel approach to combine the
generative model with a predictive model. The predictive
model extracts discriminative information from the images. We
propose a novel way to incorporate this information into the
posterior distribution of the latent variables. Alternatively, our
generative model can be viewed as a femplate for interpretation
of the discriminative method in a clinically meaningful way.
It is a generic framework that is applicable for any choice of
predictive model, for example, a deep learning-based method.

This paper makes the following contributions:

« We develop a general framework that allows an explana-
tion template (via a generative model) for a discriminative
model. Our approach does not compromise the predictive
power of the discriminative model.

o Our framework enables us to incorporate prior knowledge
into the explanation. The choice of template is problem
dependent. Given that COPD is a heterogeneous disease,
a topic model is a natural template for the explanation.

o We propose an efficient algorithm for approximate infer-
ence of the posterior distribution over the latent variables,
including the image signature of the subtypes and ensur-
ing the discovered subtypes are disease relevant.

e We apply our method on a large scale COPD study
showing good predictive performance and clinically in-
terpretable subtypes. Three of the subtypes are shown to
have significant genetic heritability.

II. METHOD
A. Overview of the Model

We develop a framework to explain a discriminative model.
The discriminative model predicts the severity of lung disease
from CT images. Our framework allows a user to provide a
template for the explainer model. The template is provided in
the form of a Probabilistic Graphical Model (PGM). Although
our approach is general, we aim at a specific way of explaining
the discriminative model in this paper where the lung region
of a patient is divided into K different tissue subtypes. The
Explainer models the data by fitting K typical reoccurring
imaging patterns across the population. We dub the typical
pattern a tissue subtype. Such a specific way of explaining
data results in the so-called topic model [25] as a template

of the graphical model; the topics are tissue subtypes. Hence,
we use “subtype” and “topic” interchangeably. As a result,
our Explainer model can be viewed as a subtyping method
that incorporates the discriminative information. Subtyping,
using topic modeling, can be done in a fully unsupervised
fashion [12], [20]; however, (1) the predictive performance of
the generative model is reduced, and (2) there is no guarantee
that the derived topics are related to the abnormality. Our
model addresses these issues. Our method consists of three
building blocks:

e Predictive Model: A forward discriminative model that
accepts images ([;) as input and produces the disease
severity “ys” as output. It is also produces a subject-level
representation (t;) that summarizes the discriminative
information of Iy to predict “y,”. The discriminative
model can be a deep neural network or a complicated
pipeline of functions leading to a prediction.

e Explainer Template: A probabilistic graphical model
(PGM) specifying a template for the explanation. A PGM
is a general framework to represent dependencies between
observed and hidden random variables [26]. One can view
the explainer as a decoder that maps the latent variables to
an observation [27], [28]. In this paper, topic modeling is
used as the decoder where the latent variables correspond
to image patterns of the subtypes across the population,
the proportion of the subtypes in each patient, and the
corresponding spatial distribution over the lung region
for each patient.

e Posterior Explainer: An encoder that uses the subject-
level representation from the discriminative model (%)
along with imaging data to produce the posterior distri-
bution over the latent variables of the template model.

The general idea of the paper is shown in Fig.1.

In this paper, we adopt the Bag of Words (BOW)
model [29]. It represents a subject s with a set, X5, containing
features extracted from N, regions covering the lung region
of subject s. This modeling choice allows us to accommodate
lungs of different sizes; the number of elements in X can vary
depending on the size of the lungs. The BOW model assumes
that features of every subject, x5, € X, are drawn from
subject-specific probability distributions, i.e., X5, ~ ps. Those
regions can be patches or supervoxels covering the lung area;
in this paper we use supervoxels. The z,, € R” represents a
D-dimensional descriptor centered at spatial location n in the
image of subject s. Effectively,

1) Our discriminative model maps subject probability den-
sities, ps, to their corresponding disease severity values,
Ys’s, without directly modeling p;.

2) The explainer template provides a parametric form for
Ps-

3) Finally, the posterior model uses the subject-level rep-
resentation and X to estimate the parameters of the
template model.

In the following section, we present our discriminative
model (Section II-B) followed by the Explainer (Section II-C).
We discuss our specific choice for the Explainer model and
show how the prediction and Explainer models can interact.
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Fig. 1: Outline of the approach consisting of separate explainer
and predictor models. The predictor model is composed of feature
extractor f computing bag of features X; aggregator g producing the
subject-level representation, ¢, and regressor h predicting y. The ¢,
provide supervision to the explainer model to ensure that the patient
specific subtype proportions are relevant to the disease severity. The
explainer model consists of a template for an explanation (can be
viewed as a decoder) and a posterior estimator (can be viewed as an
encoder).

B. Predictive Model

Consider a discriminative model for predicting disease
severity ys from a subject’s lung CT image ;. We define this
model as a composition of two functions: (1) f(-) which is a
function that extracts local descriptors from image I, hence
Xs = f(Is), and (2) an aggregation function, g(-) which we
use to construct subject-level features relating the subject to
the rest of the population. We minimize

ts
—

Uys; h(9(f(Ls))))s )]

where h is a regressor or a classifier, depending on y being
continuous or discrete and ¢(-;-) is a loss function that is
chosen accordingly. We define t, £ g(X;) to be the features
relating the subject to the rest of the population. Each of
the functions can either be hand engineered or learned; for
example f(-), g(-), and h(-) can consist of different layers
of a CNN, or a combination of hand engineered feature
functions with aggregation performed by summation, followed
by prediction via a regression model. In this paper, f(-), is a
hand-crafted feature but the same machinery applies to deep
learning based features.

As mentioned earlier, we model local features of subject
s as samples drawn from its probability distribution ps. The
aggregator maps the probability density to a vector ¢, relating
the subject to the rest of the population. To do that, we
take the following steps. First, we estimate the Kullback-
Leibler (KL) divergence between every pair of probability
distributions. Second, we convert the distribution distance to
a proper similarity kernel. Finally, we use a dimensionality
reduction method to estimate ¢, from the similarity kernel.
The pipeline is shown in Fig.2.
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Fig. 2: Construction of the subject-level features (¢,) has the follow-
ing steps: approximating pairwise divergence matrix, exponentiating
the matrix, projecting it on the PSD cone, and reducing the dimen-
sionality.

a) Estimating KL divergence: The KL divergence has the
following form,
pi(z)

KL(pillp;) = /Rd tos pj ()

In this section, we do not assume any explicit parametric
form for p;. Even with a parametric form, estimating the
KL divergence is not straightforward. Instead of assuming an
explicit parametrization, we use a non-parametric estimator
for KL divergence that is consistent and unbiased [30]. The
estimator is scalable for high-dimension features and it only
requires the nearest neighbor graph that can be approximated
using a hashing method [31]. The general idea of the estimator
is explained in Appendix A. We use KL(p;||p;) to denote the
estimator for the KL divergence.

b) Computing the Similarity Kernel Matrix: The simi-
larity kernel matrix is a Positive Semi-Definite (PSD) matrix.
For example, exponentiating the ¢»-distance between features
results in a proper similarity kernel matrix known as an RBF
kernel. However, the KL divergence is neither symmetric nor
a proper metric. First, we compute an .S x S matrix where the
entry in row ¢ and column j is

[Lolij = exp (

The variable o is set to the median of KL divergences (so-
called median trick [32]). Then, we project this matrix onto
the PSD cone to construct the kernel,

K, = Projpsp (Lo ), ()

pi(x)de. )

- (ﬁ(pillpj) + IZ\L(pjpi))) B

where Projpgp, computes the Singular Value Decomposition of
the input matrix and sets the negative singular values to zero.

c) Computing Subject Representation (ts): Since K, is a
PSD matrix, one can compute K, = BBT and view columns
of B as an implicit characterization of the subjects. However,
the columns of B are high dimensional (as many as the number
of patients in the dataset). We use Locally Linear Embedding
(LLE) to reduce the dimensionality [33]. Other dimensionality
reduction methods can be applied as well.

C. Explainer Template

A predictive model can be explained in various ways. In this
paper, we would like to allow a practitioner to use knowledge
about the disease as a “template” for the explanation. The
Explainer model approximates the distribution of the image
data, and we would like that explanation to be consistent with



the disease severity. To avoid compromising the prediction
task, we insert the subject representation (%) into the posterior
estimation of the parameters. In this section, we discuss the
population-level and the subject-level modeling assumptions
on the distribution. In the next section, we discuss how ¢, can
inform the posterior distribution.

a) Population-Level Model: Our population model is
based on the truncated Hierarchical Dirichlet Process
(HDP) [34] . The model assumes that there are K tissue types,
“topics”, that are shared across subjects in the population.
We let a Gaussian distribution with mean vector p; € RP”
and covariance matrix X € R” x R” generate supervoxel
descriptors «,,. For notational brevity, let 8, = (ug, Xi). As
K — o0, this model converges to a non-parametric HDP [35],
[36]. Rather than choosing specific values for K, this model
chooses a large enough K and imposes a sparsity term on
the allocated topics so that the actual number of topics is
discovered from data. To do that the HDP follows the so-
called “stick-breaking” construction [34],

=7 [[A =)

j<k

B~ GEM(«): 7; ~ Beta(1,a),

where 3 ~ GEM(«) denotes sampling from a stick-breaking
distribution and « and ~ are tunable hyper-parameters of the
model. For computational reasons, we also assume a conjugate
prior for gy, and Xg:

My, By ~ NIW(n)

where NIW (7)) is the Normal-Inverse-Wishart distribution with
hyper-parameters 7.

b) Subject-Level Model: For subject S,
s = [ms1, - ,Msk| and {zsn}fj;l are latent random
variables denoting the proportion of topics and the allocation
of the supervoxels to the topics (i.e., zs, € [K]) respectively.
The 7, follows the Dirichlet distribution,

7QBK)5

where « is a hyper-parameter. The z,, = k indicates super-
voxel n of subject s follows the local image descriptor of topic
k:

7|8 ~ Dir(af, -

Zsn|ms ~ Cat(my), Isn|2sn, {Ok}i(:l ~ N(ILLan’ Yian)i

Cat(,) represents a categorical distribution.

For notational convenience, we define D = {X,}_, to be
all image data, S = {z,,,ms}5_; to be all subject-specific
latent variables, and P = {6y, 3} to be all population-based
latent variables. The joint distribution of all random variables
can be written as follows,

Hp mbn|zbn7{0k} Hp Zan‘ﬂs
X Hp 7Ts|ﬁv

The graphical model in Fig.3 summarizes all assumptions of
the template model.

p(D,S,P) =

p(BlY)- (6)

Explainer Model

Variational Approximation Q’

Fig. 3: (left) Depicts template for the explainer model, modeled as a
topic model. The white and gray circles represent latent and observed
random variables and the arrows show conditional dependencies.
(right) The PGM showing the variational approximation Q' to the
explainer model with subject-level representation ¢ injected into the
estimate for q(ts).

D. Inference of Disease Related Posterior Explainer

We propose to account for the disease relevant information
in the approximation to the posterior distribution of the latent
variables. Assuming that ¢, is informative to the prediction of
disease severity, it should be incorporated into our approxima-
tion. First, we explain the classical approach, and then explain
our method to incorporate t;.

Variational Bayes Approximate of the Posterior: We seek
the true posterior distribution of the model parameters,

p(D,S,P)
[p(D,S,P)dSdP’

Exact computation of the posterior quantities is computation-
ally intractable since the denominator is hard to compute.
Therefore, Variational Bayes [37], [38] approximates the pos-
terior by maximizing the so-called Evidence Lower Bound
(ELBO) with respect to g,

rql}gaé( E(q), E(q) £ IEq [lnp(D7 877))] -

where ¢ € Q is an approximate distribution from the family
of computationally efficient probability densities Q. As it is
common in mean-field variational inference [37]-[40], we
assume the following form for the approximate posterior, g(-),

Q: Q(‘S ’P)*qlg 6 Hqﬂ'saws qusm<Psn qukv)‘k

s,n

p(S,P|D) = @)

By [Ing(S,P)],

%,_/

subject-level spatial level

where 8%, @sn, Ak, and w, are the variational parameters
corresponding to the random variables 3, zg,, O, and 7
respectively. We use the variational parameters of the ap-
proximating distribution ¢(S,P) to construct estimates of
the relevant model parameters. Specifically, we seek (1) the
posterior distribution of 8j’s as the image descriptors of
each subtype (topic) which is on the population-level, (2) the
posterior distribution of 75 as the proportion of subtypes per
subject which is on the subject-level and (3) the posterior
distribution of z,  that visualizes the spatial distribution of

population-level



the subtypes within the lung of patient s which is a spatial
level. The exact parametric form for each term is given in
Appendix B.

Injecting Discriminative Features into Posterior: In the
previous sections, we described the standard topic model con-
struction and the corresponding family of variational distribu-
tions used to approximate the posterior of the latent variables
in the model. As mentioned at the beginning of this section,
we also want the explainer model to be informed by features
that are known to be highly predictive of disease severity.
Thus our goal is to define a new family of approximating
posterior distributions, Q’, that is as discriminative as the
predictive model. To do that, we use t,, the subject specific
representation, to encode the subject-level latent variable. In
other words, we use ¢, to parameterize ¢(7s),

Q:q(S,P)= qB:8) [[almslts; W) ] a(zen; osn)

s,n

x [T a0 M), ©)
k

where W = {W,,W,} is a new parametrization of the
latent variables 7. Note that whereas before we had different
variational parameters w, for each subject, we now have one
set of parameters W shared across all subjects. The marginal
distribution ¢(7rs) is a natural part of the topic model to
introduce ts because 7, is a subject level characterization of
the topics and ¢, characterizes the subject with respect to the
rest of the population.

We model ¢(7,) implicitly by sampling from a Gaussian
distribution and passing the samples through a function to
normalize them to a simplex (i.e., >, [ms]x = 1). Similar
to the idea of a Variational Autoencoder (VAE) [41], we
parameterize the mean and the variance of the Gaussian by
a neural network. However, instead of inputting the original
image, we use the subject-level representation, ¢, as input:

€ N(07IK><K)
P, = ptss W) +e0o(ts; W)
w, = hsp(ys), (10)

where p(ts; Wy,) and o(ts; W) are neural networks com-
puting the mean and variance vector of 1), respectively. The
hsp(+) is a function transforming the unbounded values of )
drawn from a Gaussian distribution to a random variable on a
simplex, i.e., hgp : R — AX_ Many choices are possible for
hsp(+), such as the softmax function. However, computing the
probability density of the transformed random variable is not
always straightforward. Here, we choose the following form
that enables us to have a closed-form probability density for
s [42],

hsp(ws) : (11)

o = 0(Yer)(1— D2 Trsj)'
j<k
The 7, which is the result of a change of variable, has the
following probability density,
-1
;o (12)

s ) = s, i) {52}

i stick breaking 1
{Imalk = o ([alk) (1= Bl

Ju Tl s

e ~ N(0, diag(c?)):

Fig. 4: Schematic showing how the topic proportions (7s) are
constructed as a function of the subject-level features t,. Learned
functions p(+) and o (+) are neural network parameterized by W, and
W, respectively. The stick-breaking constructions of 75 normalizes

Pps.

Ams)i
. 8[¢§]7 . . N .
easily computable (see Appendix B). This is a computation-

ally appealing property for our optimization-based inference
because we can easily plug it into the factorization in Eq. 9.
The schematic is shown in Fig.4.

Similar to the classical model in Eq. 8, the parameters of
this model are learned by maximizing the ELBO. All updates
have a similar form as before except W, and W, for which
we use stochastic gradient descent (see Appendix B for more
details).

where H H is the determinant of the Jacobian which is

III. EXPERIMENTS

In this section, we evaluate the proposed method for lung
tissue subtyping on a large-scale dataset from the COPDGene
study [43]. First, we evaluate our discriminative model by
predicting a few clinical measurements that are indicative of
disease severity. We will explain and justify our choices of the
feature extractor, f(-), and aggregator g(-). Then, we compare
the predictive power of our explainer model, that can exploit
the discriminative information used by the predictive model,
with that of an unsupervised model. We use topic modeling
as the unsupervised model since that is the template for the
explainer. Finally, we visualize the subtypes on the subject
and population-level and explain the clinical interpretation of
each subtype. We further justify the discovered subtypes by
studying the genetic heritability of each subtype.

A. Setup

a) Feature Extractor: We apply our method to lung
CT inspiratory images of 7,292 subjects from the COPDGene
study [43]. We first oversegment the lung volume into spatially
homogeneous regions that align with image boundaries using
the SLIC superpixel segmentation algorithm [44]. For each
3D superpixel, intensity histogram and texture based local
image features are extracted, as has been shown to be im-
portant in characterizing emphysema [45], [46]. We compute
Haralick features (Hara) from the Gray-Level Cooccurance
Matrix (GLCM) that encode image texture but also incorporate
intensity [47]. We also separately compute 32-bin intensity
histogram features (Hist) for each superpixel, following
Sorensen et al. [46]. For an alternate texture feature, we use
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Fig. 5: (a) Odd Rows: Pearson correlation between load of subtype and FEV;. The z- and y-axis are the load of the subtype and FEV;
respectively. Even Rows: Visualization of spatial average of the learned subtypes across the population shown on a coronal slice of a lung
atlas. (b) Subtypes 1, 2, and 8 depicted on a set of nine patients. Subtypes 1 and 2 are correlated with increase in severity of COPD (negatively
correlated with FEV 1), whereas subtype 8 appears to be healthy tissue (positively correlated with FEV ).

a rotationally invariant descriptor proposed by Liu et al. [48]
which computes the histogram of gradients of pixels belonging
to a superpixel on a unit sphere using spherical harmonics; we
refer to it as sHOG.

The aggregation function, g(-), constructs subject-level fea-
tures from the local image features which has the following
steps (described in Sec. II-B): (1) we use a non-parametric
estimate of the Kullback Leibler divergence (KL), (2) we
symmetrize the KL matrix and projection it on the PSD
cone, then (3) apply the Cholesky factorization and use the
Locally Linear Embedding (LLE) method [33] to reduce the
dimensionality of the factors to a 100-dimensional subject-
level feature (i.e., t).

We compare the predictive performance of t; with two
baselines. First, Low Attenuation Area below Hounsfield Unit
of —950 on Inspiration CT image (%LAA-950Insp) which is
commonly used as a clinical measure of emphysema. Second,
a subject-level representation learned by a traditional bag-of-
words (BOW) model which is the K —means algorithm, setting
K = 100 to make it comparable with our representation.

b) Initialization of Template and Explainer Models: To
initialize the parameters of the NIW distribution, {Bk}szl, in
the template and explainer models, we ran unsupervised hier-
archical clustering [49] on local image features extracted from
supervoxels of the training set. The hierarchical clustering cut-
off threshold was set to match the number of tissue subtypes
K. Each subtype distribution was subsequently initialized
with the sufficient statistics computed from the corresponding
cluster.

c) Evaluation Metric: To evaluate our subject-level rep-
resentation objectively, we use the representation to predict a
few clinical variables that are indicative of disease severity.
We compare the performance with that of BOW and %LAA-

950Insp. More specifically, we use the following measure-
ments:

o Percent Predicted Forced Expiratory Volume in one sec-
ond (FEV; PP): A measure of lung function which is
the percentage of normal predicted values of FEV; for
individuals in the population with similar age, height,
weight, gender and ethnicity. Lower values indicate more
severe disease.

o Ratio of FEV; to Forced Vital Capacity (FEV;/FVC):
Forced Vital Capacity (FVC) is the total amount of air an
individual can exhale forcefully after taking the deepest
breath possible. This ratio represents the proportion of
an individual’s vital capacity that they can breathe out in
one second.

o Global Initiative for Obstructive Lung Disease (GOLD):
GOLD is a discrete value derived from two Spirometry
measurements and is between zero and four where zero is
used for people at risk (Normal Spirometry but Chronic
Symptoms), 1-4 denote Mild to Very Severe COPD.
The -1 is used for subjects who have Preserved Ratio
Impaired Spirometry (PRISm), which indicates that they
have reduced FEV; while having preserved FEV; /FVC.

B. Qualitative Evaluation of Subtypes

a) Population-Level Interpretation: To summarize the
results of the Explainer model, we compute the posterior
distribution of z,. The P(zs, = k|D) represents the posterior
probability of supervoxel n of subject s being assigned to
subtype k which can be visualized as a label mask. Examples
of such masks are shown in Figure 5b for a few subjects and
subtypes. We register the label masks of all the subtypes to
a common space to compute the average distribution of each
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Fig. 6: Subtype proportions averaged over subsets of the population
with GOLD score values PRISm, 0, 1, 2, 3, and 4.

subtype across the population. Figure 5a shows these average
distributions for each subtype along with corresponding scatter
plots denoting the correlation between the load of the subtype
and FEV; PP. Each dot in the scatter plot denotes one subject
where y—axis corresponds to FEV; PP and z—axis is the
average of the probabilities of that subtype over all supervoxels
of the subject. A positive correlation suggests that tissue type
is healthy and negative correlation suggests a disease-related
subtype.

We also study the average distributions of the subtypes and
their variations among patients with different GOLD scores.
The result is shown in Figure 6. Each bar represents a sub-
population of patients with a particular GOLD score and colors
within the bar represent the average proportion of a subtype
within that sub-population. All bars have equal sizes but the
proportion of subtypes varies. The proportion of subtype 1
and 2 increase as we move from PRISm to GOLD score 4
(indicating severely diseased). Subtype 8, in contrast, decreases
with increased severity. Subtype 5 is notable because even
though it is not significantly correlated with disease, it is
prevalent in PRISm sub-population relative to other GOLD
scores.

b) Patient-Level Interpretation: To have a better under-
standing of subtypes, we visualize P(zs, = k|D) on lung
CT’s of nine subjects for £ = 1,2, 8 which have the strongest
correlation with FEV; . Figure 5b shows that subtype 1 is found
primarily on pulmonary bullae and subtype 2 captures patients
with peripheral bronchiolitis in patients with severe pulmonary
disease (i.e., Gold score > 3). On the other hand subtype 8
is very pronounced on the rind of three subjects with healthy
lungs.

To get a clinical understanding of these subtypes we asked
a clinical expert to inspect all subtypes showing average and
subject-level representation. Tissue subtypes 1, 2, 3, 4, and 10
are negatively correlated with FEV;PP. Thus these subtypes
are correlated with increased disease severity. Tissue subtype
I tends to characterize paraseptal emphysema and is often
found in regions containing pulmonary bullae. Subtype I tends
to pick up low attenuation areas on the surface. Subtype
2 is often indicative of peripheral bronchiolitis, picking up
peripheral rind linear opacities in the lung, in some case blood

vessels or lymphatics, as well as tree-in-bud opacities. Subtype
3 predominantly captures different pathological features. It
is associated mostly with large high attenuation areas like
scarring and vessels as well as airways. Subtype 4 picks up on
more preserved (i.e., less destruction) areas in patients with
emphysema. Subtype 10 is mostly related to the unexplained
image statistics associated with large high attenuation areas.

In contrast subtypes 5, 6, 7, 8, and 9 are negatively
correlated with increased disease severity. Subtype 5 captures
regions that are more relatively hyperattenuated than surround-
ing regions. Subtype 6 picks up on some dimensional feature
of the thorax, maintaining a distance on structure — though it
is not clear what it is picking up. This is also true for subtype
7, which was difficult for the clinical expert to characterize.
Subtypes 5, 6, and 7 tend to be attenuation agnostic. Subtype 8
is associated with more normal and blotchy regions on the rind
of the lung. Subtype 9 is characteristic of thicker peripheral
opacities and lines on the apex of the lung which might be
indicative of higher diffusing capacity.

C. Quantitative Evaluation of the Subtypes

In this section, we evaluate the discriminative power of the
subject level representation (t,) introduced in Section II-B.
Then, we examine the inferred explainer model (Section II-D).
To do that, we compare our method with the unsupervised
method of topic modeling. For both models, we compute the
posterior means of the subtype proportions (i.e., E,[ms|D])
and use it as feature vectors for regression tasks predicting a
few measures of disease severity. For FEV; PP, FEV;/FVC,
and distance walk, we report the coefficient of determination
R2, and for GOLD score, we predict the accuracy. We also
compute the genetic heritability for each subtype which is the
proportion of the variance explained by the genetic similarity
between subjects.

a) Discriminative Power of the Representation: We
compare the discriminative performances of the three local
image descriptors along with two methods of building the
subject-level representation. We separately train linear regres-
sion models (via Ridge Regression) to predict FEV; PP and
FEV;/FVC from the subject-level features (¢5). We use the
predicted values to compute the GOLD score. We report the
average accuracy rate performed on 5-fold cross validation.
Since the GOLD score is a discrete but ordered value, we
report the percentage of cases whose classification lays within
one class of the true value (one-off) as well as exact value.
Table I compares the performance of our subject-level descrip-
tor (Distribution Distance (KL)) with classical BOW model
(K-means) for various choices of local image features. Our
approach outperforms the threshold-based approach (%LAA-
950Insp) as well as BOW across all choices of local image
descriptors. While all three choices of local image descriptors
perform equally well when used by our method, there is
significant variation in performances when BOW is used.
In the rest of the experiments, we opt to use Hist+sHOG
as the local image features for computing the subject-level
representation due to the slight advantage in performance.

To evaluate which subject-level representation is best suited
for characterizing the severity of the disease, we trained



Local Image Feature  Subject-level Descriptor Exact Acc (Std dev)  One-off Acc (Std dev)

Baseline %Low Attenuation Level (-950) 0.56 (0.03) 0.76 (0.02)
" BOW (K-means) 0.47 (0.02) 0.71 (0.02)
ara Distribution Distance (KL) 0.58 (0.03) 0.83 (0.02)
it BOW (K-means) 0.54 (0.04) 0.79 (0.01)
s Distribution Distance (KL) 0.57 (0.03) 0.82 (0.01)
BOW (K-means) 0.57 (0.03) 0.82 (0.01)

Hist+sHOG Distribution Distance (KL) 0.59 (0.03) 0.84 (0.01)

TABLE I: Average classification accuracy of predicting GOLD 5
classes from subject-level descriptors. Subject-level descriptors are
computed from corresponding local image features in each row.
Hara, Hist, Hist+sHOG denote Haralick, Histogram, Histogram
combined with Spherical Histogram of Gradient descriptors respec-
tively. Results are averaged across 5 cross-validation folds. One-off
Acc is the percentage of times the predictor was at most one-off in
predicting GOLD score.

R?
Subject-Level Descriptor FEV: PP FEV1/FVC FVC Distance Walked
%Low Attenuation Level (-950) 0.44 0.61 0.03 0.07
BOW (K-means) 0.55 0.66 0.48 0.19
Fully Unsupervised (Template) -1.16 -9.40 -518.92 -20.47
Proposed Method (ts) 0.58 0.69 0.38 0.20

TABLE II: Performance of predicting FEV; PP, FEVl/FVC, FVC,
and distance walked compared across Bag-Of-Words (BOW), unsu-
pervised topic model, our method (¢s), and % Low Attenuation Level
(-950) (classic) subject-level descriptors using ridge regression. Our
method outperforms the rest in almost all metrics. Fully Unsupervised
(Template) reports prediction accuracy when using topic proportions
inferred by the template explainer model, learned in a fully unsuper-
vised fashion.

separate linear models to predict FEV; PP, FEV; /FVC, and
distance walk from different subject-level features. Table II
reports regression accuracy (R?) on predicting these different
metrics; it shows that our subject-level representation, ¢,
outperforms the standard bag-of-words representation and is
significantly better than using %LAA-950Insp.

b) Explainer Model: We trained both the fully unsu-
pervised template model (i.e., topic model) and our proposed
supervised model, described in Sec. II-D. For both models,
we set K = 10. After training the models, we compute
the posterior mean of the subtype proportion (i.e., E,[ms|D])
on the test data for evaluation. These values are used to
train linear regression models predicting the disease severity
measures. The results are shown in Table II. The template
topic model, without injected subject-level features tg, learns
subtypes that are not predictive of disease severity. Table II
shows that subject-level features, t;, are most predictive of
disease severity. This motivates our approach, in Section II-D,
for building a variational approximation to the template model
using features ts. Since our model uses ¢ for inference, our
prediction performance is the same. Our inference algorithm
(Section II-D) transforms ¢, to compute E,[m,|D]. If this
transformed value is used for the prediction, R? of predicting
FEV; PP and FEV;/FVC are 0.42 and 0.58 respectively.
The gap between these values and the performance of £, is
the cost we pay to gain interpretation, which is much better
than the fully unsupervised method. This confirms that the
Explainer model learns tissue subtypes that are relevant to
disease prediction, and not simply capturing irrelevant image
statistics in the subject CT’s.

Subtype  h? (%) SE (%) p-value
1 23.69 842  2.3e-03
2 23.37 829  1.8e-03
3 5.83 792 2.2e-01
4 9.96 826  1.1e-01
5 ~0 8.17 5e-01
6 ~0 8.38 5e-01
7 8.37 848  1.7¢-01
8 18.74 834 1.1e-02
9 1.46 8.00  4.3e-01
10 2.16 8.00  3.9¢-01

TABLE III: Heritability of tissue subtypes. h> measures the fraction
of phenotypic variance (i.e., variance in subject subtype proportion)
explained by the total genetic variance.

¢) Genetic Heritability: To understand the genetic eti-
ology of each subtype, we perform the so-called genetic
heritability analysis. In brief, the genetic heritability analysis
studies the correlation between a quantitive trait and genetic
data by estimating the proportion of the variance explained by
genetic random effects. The variance ratio (h?) is estimated
under a linear mixed effect model where the fixed effects are
nuisance variables, and the random effect is the linear effect
of the genotyped variants. The higher the h?, the stronger
the genetic contribution to the trait. For each subtype, we
view the proportion as a quantitive trait and estimate h? using
the Restricted Maximum Likelihood (REML) method using
GCTA software [50]. We use age, gender, number of smoking
packs per year, and the first six principal components of the
genetic kinship matrix as nuisance parameters (fixed effect).
The results are shown in Table IIl. Subtype I, 2, and 8 show
significant heritability of approximately 18 — 24%, providing
strong evidence that these subtypes are biologically driven.
While subtypes I, 2 have the strongest negative correlation
with FEV;, subtype 8 has the strongest positive correlation
with the FEV;.

d) Sensitivity to K: We investigate the sensitivity of the
explainer model to the choice of the number of subtypes,
K, which is the most important one amongst the hyper-
parameters. Figure 7 shows the results of training the explainer
model for varying values of parameter K. We measure the
explainer model’s ability to explain the observed data (i.e.,
image features of the lung) on the test set by computing the
log-likelihood of the data under the model. Each point is an
average over two separate training runs of the explainer model
with random initialization. When the assumed number of sub-
types is less than 10 the explainer model’s performance suffers
but for values > 10 we see relatively stable performance.
This suggests that our choice of 10 subtypes is a reasonable
approximation of the number of image feature clusters.

IV. DISCUSSION AND CONCLUSION

In the context of machine learning for clinical application,
accurate prediction and meaningful clinical interpretation are
equally important. While sophisticated models achieve state-
of-the-art prediction performance, they are challenging to
interpret. On the other hand, explainable models tend to be
too simple to have excellent predictive performance. In this
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Fig. 7: Log-likelihood (LL) of explainer model on the held out set
for different values of K. Each point is an average over two separate
training runs of the explainer model with random initialization.

paper, we propose to use a probabilistic graphical model
(PGM) to bridge this gap. Their expressive structure allows
incorporating underlying domain knowledge (via a template).
The approach lets the practitioner build a template for the
explanation using knowledge about the disease. In this paper,
we showed an application of our method for COPD, which
is a highly heterogeneous disease. We viewed every patient
as a mixture of different subprocesses; hence, a topic model
is a proper template for the explanation. Our framework is
general, and other choices of PGM are applicable depending
on the application.

We showed that one could incorporate the discriminative
information into the space of the posterior distributions to
avoid loss of predictive performance. The idea is that the
predictive model shares covariates relevant to prediction ()
with the generative model. Therefore, they have the same
prediction performance. We inject t, into the approximation
of the template’s posterior distribution. To make the inference
computationally efficient, we presented a specific transforma-
tion of ¢, that results in a closed-form parameterization of the
posterior distribution of the subtype proportion.

We apply our model on CT images of the COPDGene
dataset. Our predictive model estimates subject dissimilarity
using a non-parametric estimation of the KL divergence (see
Section II-B) and converts it to a subject-level representation
(ts). We compare our method with K-means as a standard
Bag-of-Words method. One can view K-means as a simple
graphical model which implicitly assumes a spherical Gaus-
sian distribution for input features. Table I shows the effective-
ness of our non-parametric method for predicting the severity
of the disease. The table shows that our approach achieves
the best prediction performance regardless of the input local
image descriptor while there is significant variation in the
performance of K-means. This result suggests that the implicit
distribution assumption of K -means is not compatible with all
choices of input features. However, our non-parametric model
does not rely on any distributional assumption. The results in
Table II validate the main idea of the paper, namely using
ts to build the posterior distribution. It shows that the vanilla
topic modeling, which is fully unsupervised, completely loses
discriminative power.

The main advantage of a PGM is that it is highly in-
terpretable. The posterior probability of the different latent

random variables in our model provides insight into the dis-
ease. Figures III-A visualizes the population-level and subject-
level distributions of the subtypes. However, not all inferred
subtypes aligned with the current clinical understanding of
the disease; (e.g., subtypes six, seven, and ten). The fact that
subtype ten is positively correlated with FEV; suggests that
it represents healthy tissue. We observed that the proportion
of subtype five is higher in the PRISm sub-population than
the rest of the population (Figure 6). This is an exciting
area for further investigation since the PRISm patients are
difficult to characterize. However, this subtype does not show
a significant correlation with the genetic data. Interestingly, the
most significant subtypes in term of genetic heritability are the
ones with the strongest correlation with FEV;. Understanding
the biological etiology of those subtypes requires further
causal analysis, which is another avenue for future research.

In this paper, we applied our model on pre-engineered
local image descriptors. However, the proposed framework is
general and can be applied to interpret deep learning models.
For example, £, can be the output of the last fully connected
layer in a Convolutional Neural Network (CNN). Currently, we
use a generative model to interpret a pre-trained discriminative
model. An exciting direction for future research is to train
both models in an end-to-end fashion. One can use the genetic
relatedness matrix as an extra covariate to the explainer model.
Lastly, we would like to use the subtypes that are heritable
and related to the disease as phenotypic traits for genetic
association studies.
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