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Abstract. Emphysema is one of the hallmarks of Chronic Obstructive
Pulmonary Disorder (COPD), a devastating lung disease often caused by
smoking. Emphysema appears on Computed Tomography (CT) scans as
a variety of textures that correlate with disease subtypes. It has been
shown that the disease subtypes and textures are linked to physiological
indicators and prognosis, although neither is well characterized clini-
cally. Most previous computational approaches to modeling emphysema
imaging data have focused on supervised classification of lung textures
in patches of CT scans. In this work, we describe a generative model
that jointly captures heterogeneity of disease subtypes and of the patient
population. We also describe a corresponding inference algorithm that
simultaneously discovers disease subtypes and population structure in an
unsupervised manner. This approach enables us to create image-based
descriptors of emphysema beyond those that can be identified through
manual labeling of currently defined phenotypes. By applying the result-
ing algorithm to a large data set, we identify groups of patients and
disease subtypes that correlate with distinct physiological indicators.

1 Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is a chronic lung disease char-
acterized by poor airflow. One of the hallmarks of COPD is emphysema, i.e.,
destruction of lung alveoli and permanent enlargement of airspaces [1]. Several
subtypes of emphysema have been identified and are commonly used for diagno-
sis and prediction of patient prognosis [2]. The disease subtypes have also been
shown to correlate with genetic data and physiological indicators [1].
Emphysema appears on Computed Tomography (CT) scans as a variety of
textures which are associated with clinically defined disease subtypes. However,
there is substantial intra-reader and inter-reader variability when identifying
subtypes in CT images [2]. Computational approaches to the classification of
textures in CT scans promise to identify subtle textural differences beyond those
that are visible to human readers. This nuanced information can be harnessed
to produce well-defined, reproducible disease subtypes. Beyond fully 3D texture
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analysis, the additional benefits of computational approaches include the possi-
bility of providing novel insights into the disease once the heterogeneity of the
patient population is characterized.

We present a method that simultaneously detects distinct patient clusters
and disease subtypes. The algorithm is based on a generative model that cap-
tures the underlying hypothesis about population structure and distributions of
disease subtypes. We assume that each cluster of patients is associated with a
distinct distribution of disease subtypes, which are based on features extracted
from Computed Tomography scans [3]. We derive an inference algorithm that is
based on variational Expectation-Maximization [4]. We apply the algorithm to
a data set of 2457 thoracic CT scans and observe notable associations between
physiological indicators and patient clusters and disease subtypes identified by
the method. Further, we examine associations in simplified models that omit
either patient clusters or disease subtypes to demonstrate the clinical advantage
of the hierarchical model that includes both patient clusters and disease sub-
types. We compare associations that are identified in the generative model to
those found in a model where disease subtypes are discovered in a supervised
manner.

Our approach departs from the majority of prior

research that has focused on supervised classification o~ ] —
of patches extracted from CT scans based on exam- G
ples labeled by clinical experts [5,6]. An exception is

a method for joint modeling of imaging and genetic I .
data in the same clinical population [7]. By contrast, NG Fx
our work models only imaging data, but we explicitly j

detect and characterize homogeneous sub-populations o %,
defined by similar groups of disease subtypes, which R s

opens directions for future analysis. An additional work
similar to ours is found in [8], which discovers disease
subtypes in an unsupervised manner. However, it was
conducted on a smaller data set and does not model
patient clusters.

Fig. 1. Graphical repre-
sentation of the genera-
tive model.

2 Model

Our generative model relies on the assumption that there are K underlying
patient clusters, each characterized by a different distribution of disease sub-
types. We use N to denote the total number of CT scans in the study. When
processed, each scan is represented by R non-overlapping patches. Let S, be
the patch around voxel r in patient n. Patches are entirely contained within
a lung. We apply a chosen feature extraction method to S,, to construct a
feature vector F,,.. The feature vectors {F,,} serve as the input into our algo-
rithm. In our experiments we use a combination of Grey Level Co-Occurrence
Matrix (GLCM) [6] features and intensity histograms as feature descriptors
which are both extracted from three-dimensional patches; the modeling app-
roach readily accepts a broad range of descriptors.
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The distribution of cluster assignments for any patient in the study is para-
metrized by 7 and is represented by a vector C, for patient n. Cp, = 1 if
patient n belongs to cluster k; Cpr = 0 otherwise. For all patients in cluster k
the distribution of disease subtypes is parametrized by «j and is represented
by L., for patch r in patient n. Each patch belongs to one of S disease sub-
types. Ly,s = 1 if the patch belongs to subtype s; L,.s = 0 otherwise. We use a
Gaussian distribution N (-; u, ) with mean p, and covariance Xy to model fea-
ture vectors in the disease subtype s. The generative model can be summarized
as follows (Fig. 1):
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Each subject is viewed as an independent and identically distributed sample
from this distribution, giving rise to the full likelihood model:
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Inference Algorithm. We set the number of patient clusters K and the num-
ber of disease subtypes S. The observed data consists of feature vectors {F,,}
of N patients for whom we extracted features from R patches each. We aim to
infer the most likely subtype L, for each patch r in patient n and the most
likely cluster C,, for each patient n. Additionally, we estimate the parameters:
the mixing proportions of the patient clusters 7, the mixing proportions of the
disease subtypes {ay} for each patient cluster, and the means and variances
{us, Xs} of the image features for each disease subtype.

We perform inference via variational Expectation-Maximization (EM) [4].
Since computing expectation with respect to the full posterior distribution
p(L, C|F, o, m, p, X) is intractable due to coupling between C' and L, we approx-
imate the posterior distribution with a product of two categorical distributions:

q(C, L;1,0) = qc(C;)qr(L; 0) = HH HHeﬁ:f;s, (1)

r=1s=1

where 1 and 0 are variational parameters. This simplifies the computation of
the expectations.

In the variational approach, we iteratively optimize a lower bound for
In(p(F; o, m, p, X)) with respect to the parameters {my, aks, fis, Xs, Unk, Onrs }
This lower bound can be expressed as:
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p(F,C Lia,m 1, X)
q(C, Ly, 0)
We randomly initialize m and «, and then iterate between two steps until

convergence. In the expectation step, we hold 7, o, u and X' fixed and estimate

the variational parameters ¢ and 6 to maximize the lower bound in Eq. (2) by
iteratively applying the updates:

S R K
wnk X H H 0622”7 s.t. ank = 17
k=1

In(p(F; e, m, 1, X)) > E4 |In (2)

s=1r=1
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0 s X H gt st ZQ”” =1.
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In the maximization step, we hold the values of ¥ and 6 fixed and estimate
the model parameters, 7, «,  and X, that maximize the lower bound in Eq. (2)
via the following update equations:

N
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Once the parameter estimation process is complete, we determine C,
and L,, by maximizing the approximate posterior distributions gc(Ch;by)
and qr,(Lpy; Onr) respectively.

3 Empirical Results

Data. We investigated the proposed method in the context of an imaging study
that includes 2457 thoracic CT scans of smokers diagnosed with COPD [1].
COPDGene is a multi-center study that acquired CT scans, genetic data, and
physiological indicators in COPD patients. The data was collected by 21 sites
across the United States. The volumetric CT scans were obtained at full inhala-
tion and at relaxed exhalation. Image reconstruction produces sub-millimeter
slice thickness, and employs edge and smoothness enhancing filtering [1]. In
addition, we have 1525 patches from the CT scans of 267 patients from this
cohort that were manually assigned to clinically defined disease subtypes by an
expert.



184 P. Binder et al.

Parameter Selection. We randomly sampled 1000 non-overlapping patches
from each patient. Emphysema has been described at the level of the secondary
pulmonary lobules [5], therefore we select 11 x 11 x 11 patches, which are approx-
imately the size of this structure. There have been between four and 12 disease
subtypes and between three and 10 patient clusters described in clinical litera-
ture [3,5]. We examine models with the number of patient clusters and disease
subtypes in this range. We chose to further analyze the model with eight patient
clusters and six disease subtypes, as this was the largest number of disease sub-
types and patient clusters for which each patient cluster and disease subtype
received at least five percent probability.

Feature Vectors. We employed 11-dimensional feature vectors, which were
chosen based on their classification accuracy on the labeled patches in our data
set when using the features as a texture descriptor. The first nine dimensions
correspond to Grey Level Co-Occurrence Matrix (GLCM) features [6]. GLCMs
represent the joint probability distribution of intensity values of pixel pairs in
a given patch [6]. To construct this descriptor, the image is discretized into
eight gray levels. The value of the entry at position (¢, 7) in the GLCM captures
the proportion of pixel pairs at a given offset with the corresponding inten-
sity pair values for i,j € {1...8}. To obtain a degree of rotational invariance,
we averaged the GLCMs over uniformly distributed directions in three dimen-
sions. We extracted nine features from these matrices to construct the descriptor:
contrast, dissimilarity, homogeneity, correlation, entropy, energy, cluster shade,
cluster prominence and maximum probability [6]. The next two dimensions of
the feature vector correspond histogram bins of the voxel intensities within the
patch.

3.1 Results

Disease Subtypes. Figure2 maple 1. Confusion matrix between clinically
illustrates example patches defined subtypes and automatically detected sub-
for each of the identified types. The values in the table correspond to the
disease subtypes. A confu- number of patches with the corresponding clinical
sion matrix between the dis- label and detected subtype.

ease subtypes and the clini- Giinical Tabel ST 1]ST 2[ST 3[ST 4|ST 5/ST 6
cal labels is shown in Table 1. Normal lung tissue 339 | 0| 1 (103 | 7 |61
On the labeled portion of Panlobular emph. 1146 | 9| 00 |0
our data set. we found that Paraseptal emph. 16 | 53 |100 | 48 |20 6

b

Mild centrilobular emph. | 96 3 |11 |68 | 3 |30
Mod. centrilobular emph.| 69 | 74 |112 | 28 | 4 2
Sev. centrilobular emph. 8 | 57 | 49 0|0 0

67% of patches that were
labeled as clinically normal
were placed in the same dis-
ease subtype by our algorithm, and clinically normal patches represent 64 %
of all labeled patches within this disease subtype. Panlobular and paraseptal
emphysema correspond to disease subtype 2 and subtype 3 respectively. Our
results suggest that centrilobular emphysema is a mixture of identified disease
subtypes 1, 2, 3 and 4.
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Fig. 2. Top two rows: example CT scans from each of the eight patient clusters identi-
fied by our algorithm. Colors correspond to disease subtypes identified by our algorithm.
Bottom row: patches from the six disease subtypes identified by our algorithm. (Color
figure online)

Spatial Contiguity. Emphysema clusters spatially in the lungs, as do the
disease subtypes our algorithm identifies, as can be seen in Fig.2. Each voxel
in every lung was labeled independently based on the most likely subtype it
would belong to under our model, without any enforced smoothing. We eval-
uated spatial contiguity by permutation testing [9]. For each voxel labeled by
our algorithm we compute the proportion of neighboring voxels that belong to
the same disease subtype. We average this value over the entire lung to obtain
a spatial contiguity score. To obtain a distribution of the score under the null
hypothesis we assigned voxels within the lungs to random disease subtypes 1000
times for each scan while maintaining the proportion of disease subtypes for each
lung. We found that across all CT scans, the spatial contiguity scores produced
by our algorithm are greater than the maximal values in the corresponding null
distribution, corresponding to rejecting the null hypothesis with p < 0.001.

Associations with Physiological Indicators. We emphasize that the phys-
iological indicators are not available to the algorithm when fitting the gener-
ative model to the image data and therefore provide an indirect validation of
the model’s clinical relevance. We quantify the associations between the struc-
ture detected by our method and physiological indicators relevant to COPD: six
minute walking distance, body mass index (BMI), forced vital capacity (FVC),
forced expiratory volume (FEV), change in FVC value from treatment, the ratio
between the FEV and FVC values, and the number of years smoked. We ran our
algorithm on a randomly selected half of our scans and labeled the remaining
scans based on the estimated model parameters. In particular, we assigned each
patient to the most likely cluster and constructed an empirical distribution of
disease subtypes for the patient based on the image patches. We repeated this
procedure 100 times to estimate variability in the results.

We constructed three baseline models by eliminating patient clusters (K = 1)
or disease subtypes (S = 1) or both (K = 1,5 = 1). In the last case, we extract
feature vectors from patches in each patient, and then average and normalize the
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feature vectors in each patient to produce a single patient-specific feature vector.
A fourth baseline method was constructed by identifying the disease subtypes
in a supervised manner. In this case, we utilized the same feature vectors as
previously described, and performed classification with Support Vector Machines
(SVMs) trained on the labeled patches to assign 1000 random patches in each
lung to one of six clinically identified subtypes. We learned the patient clusters
in an unsupervised manner as in the fully unsupervised model.

To quantify the associations between distributions of disease subtypes or the
averaged normalized feature vector for a patient and a physiological indicator we
perform linear regression. The strength of the correlation is quantified via the R?
value. The association between patient clusters and physiological indicators is
quantified via the normalized mutual information score [10]. Different metrics
are used to quantify the associations between patient clusters and proportions
of disease subtypes or feature vectors, as the former is a discrete label while
the last two are continuous quantities. These associations were identified on the
portion of the data set that was not used to construct the model.
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Fig. 3. Left: R? value between the distributions of disease subtypes (1st, 3rd, and 4th
model) or feature vectors (2nd model) and physiological indicators. Right: Normalized
Mutual Information between patient clusters and physiological indicators.

Figure 3 reports the associations for all models. These results demonstrate the
advantage of modeling both patient clusters and disease subtypes. We observe
that there is a stronger association between physiological indicators and patient
clusters in the full model than in the model with only clusters. For all physio-
logical indicators, there is a higher association with the distributions of disease
subtypes in the full model than in the model with only disease subtypes. This
demonstrates that modeling patient clusters produces more clinically relevant
distributions of disease subtypes in each patient. The model without patient
clusters or disease subtypes exhibits even weaker associations than a model with
only disease subtypes.

Figure 3 demonstrates the advantage of discovering the disease subtypes in
an unsupervised manner. In the full model, we obtain stronger associations than
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in the model where disease subtypes are found in a supervised manner. This
is partially explained by the fact that feature selection was performed to opti-
mize classification performance on supervised patches and additional structure is
obtained in the unsupervised discovery of patient clusters and disease subtypes.

4 Conclusions

We presented an unsupervised framework for the discovery of disease subtypes
within emphysema and of patient clusters that are characterized by distinct dis-
tributions of such subtypes. We built a generative model that parametrizes the
assignment of voxels in CT scans to disease subtypes and the assignment of
patients to clusters. The associations between the patient clusters and physio-
logical indicators and distributions of disease subtypes and physiological indica-
tors illustrate the clinical relevance of the detected heterogeneity in the patient
cohort.

The patient clusters that our model produces merit further exploration. It
would be worthwhile to examine their correlations to genetic markers. An addi-
tional extension is to directly examine whether different patient clusters exhibit
distinct clinical prognoses or respond differently to clinical interventions.
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