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Abstract. Computing similarity between all pairs of patients in a dataset
enables us to group the subjects into disease subtypes and infer their dis-
ease status. However, robust and efficient computation of pairwise sim-
ilarity is a challenging task for large-scale medical image datasets. We
specifically target diseases where multiple subtypes of pathology present
simultaneously, rendering the definition of the similarity a difficult task.
To define pairwise patient similarity, we characterize each subject by a
probability distribution that generates its local image descriptors. We
adopt a notion of affinity between probability distributions which lends
itself to similarity between subjects. Instead of approximating the dis-
tributions by a parametric family, we propose to compute the affinity
measure indirectly using an approximate nearest neighbor estimator.
Computing pairwise similarities enables us to embed the entire patient
population into a lower dimensional manifold, mapping each subject from
high-dimensional image space to an informative low-dimensional repre-
sentation. We validate our method on a large-scale lung CT scan study
and demonstrate the state-of-the-art prediction on an important phys-
iologic measure of airflow (the forced expiratory volume in one second,
FEV1) in addition to a 5-category clinical rating (so-called GOLD score).

1 Introduction

As the size of an image dataset grows, the chance of observing more pheno-
typically similar patients increases. This premise makes analysis of large-scale
image datasets attractive: subject similarities can reveal subtypes or the under-
lying biology of disease. In addition to the computational challenges of large
datasets, defining robust image similarity measures in the presence of significant
anatomical variation is a difficult task. Our approach targets heterogeneous dis-
eases where the pathology in each patient can be thought of as a superposition
of different processes, or subtypes of a disease. We propose a method that is
computationally efficient and statistically robust. Our motivation comes from
a study of Chronic Obstructive Pulmonary Disease (COPD), but the resulting
model is applicable to a wide range of heterogeneous disorders.



A common method to compute similarities is based on image registration.
Gerber et al. [5] applied pairwise registrations and defined similarity based on
geodesic distance on the Riemannian manifold of diffeomorphic transformations.
Hamm et al. [6] proposed a similar method except they restricted their analysis
to a smaller subset of transformations and incorporated the residual of the reg-
istration into the similarity measure. Both methods rely on pairwise registration
which is computationally demanding in large-scale settings and less applicable
in the presence of large variations in anatomy. Unlike brain abnormalities in
Alzheimers disease, the lung abnormalities in COPD are scattered and less lo-
calized [10]. This renders the definition of similarity between two images more
challenging.

One approach to this challenge is to model image content as a set of local
features. More specifically in the context of lung disease, Sorensen et al. [16] use
histogram and texture features of local patches to create a binary ab/normal
classification and suggest aggregation of the posterior probabilities to a subject-
level score. Similarly Toews et al. [17] propose to represent images as collections
of scale-invariant features and construct an approximate nearest neighbor graph
of local features. To infer the subject-level score, they sum the log-likelihood
function of the class associated with observed image features. In both cases, the
presence of the patch-level labels [16] or subject-level labels [17] is required to
infer the patient score. It is not clear how those methods can be applied in an
unsupervised fashion.

We propose a general method that aggregates similarities from local-level
image descriptors to infer subject-level similarities. The local descriptors are
viewed as samples from subject-specific probability distributions; therefore the
similarity between subjects is naturally reduced to a notion of similarity between
probability distributions which should be estimated from their observed samples.
Although a parametric approach can be used to infer the distributions for each
subject [1], estimating those parameters can be computationally expensive if only
pairwise similarities are of interest. Also, a misspecified parametric family biases
the similarity estimation. We adopt a non-parametric approach proposed by
Wang et al. [19] where the computation of similarity only depends on distances
of each local feature from its k-nearest neighbors and does not require kernel
density estimators (KDE). Using fast methods to approximate a nearest neighbor
graph [12] enables us to achieve computational efficiency comparable to that of
Toews et al. [17]. Another advantage is that no patch- or subject-level labels are
required hence the method can be applied in an unsupervised fashion (e.g., for
sub-typing).

We illustrate an application of the method on a large-scale study of COPD.
Our method outperforms the state-of-the-art approach in predicting clinical val-
ues related to COPD. We show how this method is used to embed the patient
population in a lower dimensional space and its effectiveness in capturing disease
structure in the embedding space.
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Fig. 1. (a) Feature extraction procedure for each subject. We extract local image de-
scriptors (e.g., xn,j) from each super-pixel. Xn denotes the set of all local features from
subject n. We model each subject with its corresponding probability density (e.g., pn).
(b) Similarity graph between subjects. k(pi, pj) denotes the similarity strength (affin-
ity) between subjects i and j.

2 Method

In this section, we first describe the notation and the general setting. Then, we
explain the algorithm to compute the pairwise patient similarities. Finally, we
will explain how we use the similarity measurements to embed the patient pop-
ulation into a lower dimensional representation which is used to predict clinical
values.

General Setting: Let each of X1, · · · , XN denote the set of local image features
extracted from images of subjects 1, · · · , N in the dataset. More specifically, we
use an over-segmentation approach [7] to subdivide areas of a lung into groups
of homogeneous super-pixels while preserving the boundaries of objects in the
image. Xn = {xn,1, · · · , xn,mn} is a set of image signatures extracted from mn

super-pixels where xn,i ∈ Rd are local image descriptors extracted from region
i of subject n. We will explore different options for the local descriptors in the
experiment section of the paper. Following so-called “bag-of-words” represen-
tation [15], we model Xn as sample points from an unknown subject-specific
distribution, Xn ∼ pn (i.e., xn,i ∼ pn). We define similarity between subject i
and subject j by defining a similarity measure between the corresponding dis-
tributions k(pi, pj). We aim to estimate this quantity without estimating the
underlying distribution. The general scheme is shown in Fig.1.

Distance between Distributions: To define similarity between images of two
subjects given their observed bags of local descriptors X ∼ p, X ′ ∼ q, we need to
define similarity between their corresponding distributions. We first define the
distance between distributions and convert it to a similarity measure. We use



Kullback Leibler (KL) as the distance between distributions:

KL(p‖q) =

∫
Rd

log
p(x)

q(x)
p(x)dx. (1)

There is no closed-form for KL even for a mixture of two density distributions.
We adopt a non-parametric approach proposed by Wang et al. [19] that does
not require an explicit density estimation and estimates KL directly using a
k-nearest neighbor graph.

Given sets of observations X,X ′ from the two probability distributions p, q,
X = {xi|xi ∼ p; i = 1, · · · , N} and X ′ = {x′i|x′i ∼ q; i = 1, · · · ,M}, a k−nearest
neighbor estimator of a point z only depends on the distance from z to the
elements of X and X ′ [9]:

p̂k(z) =
k/N

vol(z, ρk(z))
=

k

Ncρdk(z)
, q̂k(z) =

k/M

vol(z, νk(z))
=

k

Mcνdk(z)
, (2)

where vol(x,R) is the volume of a ball of radius R centered at z, ρk(z) and
νk(z) are the distance from the k’th nearest neighbor of z in the sets X and X ′

respectively, and c stands for the volume of a d-dimensional unit ball.
An unbiased estimator for the KL(p‖q) from the corresponding set of ob-

served local descriptors, X and X ′ is the following:

K̂LN,M (p‖q) =
d

N

N∑
n=1

log
νk(xn)

ρk(xn)
+ log

M

N − 1
. (3)

Notice that the method directly estimates KL without estimating p and q and it
only depends on the k−nearest neighbor distances (i.e., ρk(·), νk(·)). The ap-
proximate k−nearest neighbor graph is constructed efficiently using [12]. Wang et

al. [19] proved the estimator is asymptotically unbiased: limN,M→∞ E
[
K̂LN,M (p‖q)

]
→

KL(p‖q).

Subject-level Score Vector and Prediction: Let matrix L denote expo-
nentiated symmetric KL distance; i.e., Lij = exp

(
−KLsym(Xi, Xj)/σ

2
)

where

KLsym(Xi, Xj) = K̂L(Xi‖Xj) + K̂L(Xj‖Xi). K̂L(Xi‖Xj) is estimated using (3).
We form the similarity kernel by projecting L on the positive definite cone as
suggested by Chen et al. [4]. As suggested by Chang et al. [3], we set σ to the
median value of the KLsym in the dataset in all of our experiments.

Computing the similarity matrix enables us to employ an embedding method
and project each subject to a lower dimensional space by unfolding the manifold
space of the subjects. To do that, we apply the Cholesky decomposition on
the similarity matrix and feed the resulting factorization to a Linear Embedding
(LLE) [20] algorithm and derive a lower dimensional subject-specific score vector.
The resulting vector will be used for prediction of clinical measurements and
visualization.



3 Experiments

In this section, we apply our method to a large-scale study of a COPD. We
validate our method by predicting clinical measurements related to COPD and
characterizing the disease continuum. The goal of this experiment is to compare
the proposed method with classical baselines and investigate its robustness with
respect to different choices of local image descriptors.

We apply our method on various local image descriptors and compare our
performance with a global baseline feature and a classical representation method.
As a baseline feature, we use two clinically important CT measurements of lung
density, INSP950 and EXP950. INSP950, the percentage of voxels < -950HU, is a
quantitative measure of emphysema. EXP950, the percentage of voxels < -950HU
after exhalation, reflects the degree of gas trapping [14, 11]. We also compare our
approach with a classical representation method, Bag-of-Words (BoW), where
images are represented by a histogram of words; words are clustered features
from super-pixels. We used k-means clustering for BoW.

Data Preparation and Experimental Setting: We apply the method to CT
images of lungs on 7292 subjects from the COPDGene study [13]. After auto-
matic segmentation of the lung, we employ an over-segmentation approach [7]
to subdivide areas of a lung into groups of spatially homogeneous super-pixels.
We extract the following local features:

Histogram: Local histogram have been shown to be effective in characterizing
emphysema [1, 2, 16]. We follow two procedures to extract histogram features.
In the first, we extract a 32-bin histogram from each super-pixel (ref. as
Hist32); 32 is roughly the third root of the average number of pixels in
the super-pixel as suggested [16]. In the second procedure, we divide the
histogram into 400 bins, followed by a PCA to reduce the dimensions to 30
(ref. as HistPCA) as suggested [1].

Texture: Texture features are shown to be important in characterizing lung
tissue [16, 18]. Sorensen et al. [16] suggested using rotational invariant texture
features. We adopt a rotation invariant histogram of gradient descriptors as
proposed by Liu et al. [8]. Their method considers a gradient histogram as
a continuous angular signal represented by the spherical harmonics (ref. as
sHOG). We also extract Harilick features from the Gray-Level Co-occurrence
Matrix (GLCM) following the pipeline [18] where the histogram information
is already incorporated.

Evaluation: After computing the similarity matrix and the embedding vector
scores (see Section 2), the resulting vectors are used as features in the following
experiments. We use the Random Forest method to predict the GOLD score and
linear Ridge regression (with the regularization weight set to 1) to estimate
the continuous respiratory score (FEV1). Since neither of these clinical scores
are derived from images, this experiment independently validates how well the
embedding coordinates computed from the image similarity measure characterize



Table 1. Mean and bootstrap 95% confidence interval width (in parentheses) of the
prediction performance for GOLD score and FEV1. The best results are shown in bold.
The six first rows are the baseline methods: global feature and the traditional Bag-of-
Words representation respectively.

FEV1 GOLD

Image Feature r2 MSE % Accuracy
Baseline 0.50 (0.03) 0.018 (0.001) 42.8 (1.5)

B
o
W

Hist32 0.51 (0.03) 0.018 (0.001) 47.2 (1.7)
HistPCA 0.51 (0.04) 0.018 (0.001) 47.3 (1.5)
Hist32+sHOG 0.56 (0.03) 0.016 (0.001) 47.2 (1.7)
HistPCA+sHOG 0.51 (0.04) 0.018 (0.001) 47.2 (1.3)
Harilick 0.33 (0.03) 0.025 (0.002) 39.6 (1.6)

O
u
rs

Hist32 0.57 (0.03) 0.016 (0.001) 45.7 (1.5)
HistPCA 0.57 (0.03) 0.015 (0.001) 47.1 (1.7)
Hist32+sHOG 0.59 (0.03) 0.015 (0.001) 47.0 (1.8)
HistPCA+sHOG 0.57 (0.03) 0.015 (0.001) 47.3 (1.7)
Harilick 0.56 (0.03) 0.016 (0.001) 45.4 (1.6)

the underlying disease process. We report r2 and the Mean Squared Error (MSE)
of the prediction of FEV1 and accuracy for GOLD score. We train on 99%, test on
1%, and repeat this process 50 times.

The results are reported in Table 1. All similarity-based predictions outper-
form the traditional threshold-based approach (i.e., Baseline) irrespective of
the local descriptors. To be comparable, we set the number of clusters in BoW

to the dimensionality of our embedding method (d = 100). Our similarity-based
representation outperforms BoW in r2 and MSE and ties on accuracy. We com-
puted p-values of the performance differences using a paired t-test. Our method
is significantly better than the clinical image feature with − log p-value� 5.
The − log p-values of the difference between the best performances of BoW and
our method for r2, MSE, and accuracy are 3.4, 3.2, and 0.01 respectively. The
significant performance difference between BoW and our method for Harilick de-
scriptor demonstrates robustness of the method with respect to choice of texture
feature.

Fig.2 reports the effect of dimensionality of the representation on the predic-
tion performance. Fig.2a shows the projection of patients on a 2D embedding
space. A dot represents a patient and its color denotes FEV1. Even 2D embedding
captures the structure of the disease; subjects on the bottom right are healthier
than subjects on top left of the embedding space. Fig.2b reports the r2 for FEV1
with respect to dimensionality of the representation (i.e., cluster size for BoW

and embedding dim.) for Hist32+sHOG features. Both methods stabilize quickly
in terms of performance and our method outperforms BoW.
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Fig. 2. (a) Embedding patients on a 2D space. A dot represents a patient and its
color denotes FEV1 (severity of COPD). Hotter colors indicate more severe disease.
(b) Prediction performance (r2) of FEV1 with respect to the dimensionality of the
embedding.

4 Conclusion

In this paper, we proposed to embed subject images into a manifold using an
efficient pairwise similarity between probability distributions. We adopted a non-
parametric approach requiring very few assumptions about the probability dis-
tributions that scales well as shown in our large-scale study. The entire process
of computing similarities and the embedding takes less than few hours for all
subjects (Python implementation). The experimental results showed that even
projection on a two dimensional space can capture the continuum of the dis-
ease. This was evaluated quantitatively by predicting two clinical scores, none
of which are derived from images, thus validating the benefits of the similarity-
based method in characterizing the underlying disease process. Our approach can
be used in longitudinal analysis to study disease exacerbation since we can asso-
ciate coordinates in the embedding space to the clinical phenotype. Although we
focus on COPD, our approach can be widely used in other scenarios particularly
for heterogeneous diseases and when the bag-of-words model applies.
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