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Abstract—

We propose a unified Bayesian framework for detecting

genetic variants associated with disease by exploiting image-

based features as an intermediate phenotype. The use of imaging

data for examining genetic associations promises new directions

of analysis, but currently the most widely used methods make

sub-optimal use of the richness that these data types can

offer. Currently, image features are most commonly selected

based on their relevance to the disease phenotype. Then, in a

separate step, a set of genetic variants is identified to explain the

selected features. In contrast, our method performs these tasks

simultaneously in order to jointly exploit information in both

data types. The analysis yields probabilistic measures of clinical

relevance for both imaging and genetic markers. We derive

an efficient approximate inference algorithm that handles the

high dimensionality of image and genetic data. We evaluate the

algorithm on synthetic data and demonstrate that it outperforms

traditional models. We also illustrate our method on Alzheimer’s

Disease Neuroimaging Initiative data.

Index Terms—Imaging Genetics, Bayesian Models, Variational

Inference, Probabilistic Graphical Model

I. INTRODUCTION

In this paper, we propose a probabilistic model to discover
genetic variants associated with a disease using image data as
an intermediate phenotype. The search for genetic variants that
increase the risk of a particular disorder is one of the central
challenges in medical research, and has been traditionally
performed via genome-wide association studies (GWAS). In
GWAS, it is common to examine the associations of genetic
variants with disease by performing a univariate analysis
between the disease incidence and each genetic marker inde-
pendently. However, testing one variant at a time does not fully
realize the potential of GWAS because some genetic variants
may have a weak but cumulative effect that is neglected by a
univariate method [1], [2]. Imaging genetics introduces image-
based biomarkers as a promising intermediate phenotype1

(i.e., endo-phenotype) between genetic variants and diagnosis.

* Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/
how to apply/ADNI Acknowledgement List.pdf
** Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

1The term “intermediate phenotype” or “endophenotype” is commonly used
in the literature [3], [4]. It is called intermediate phenotype because in a
hypothetical causal model, it falls between the genotype and disease diagnosis.
The intermediate data in our case is the image feature (e.g., average thickness
of the cortical regions or volume of the sub-cortical areas).

Given that in some pathologies, such as the Alzheimer’s dis-
ease, imaging features have strong correlation with the clinical
diagnosis and can offer a clearer picture of the association [5],
[6], it is beneficial to exploit them to improve the associations
of weak genetic markers. Furthermore, in contrast to a binary
diagnosis, imaging data contains many variations caused by a
disease which helps to stratify the disease population in more
informative ways.

Imaging genetics presents numerous challenges in clini-
cal studies due to the relatively small number of subjects
and extremely high dimensionality of images (hundreds of
thousands of voxels) and genetic data (millions of single
nucleotide polymorphisms (SNPs)). To address the problem
of high dimensionality and small sample size, earlier methods
considered only a few imaging candidates (voxels, regions,
or other biomarkers) or only a few genetic markers in the
analysis [7], [8]. The reduced joint dataset was then analyzed
in a univariate framework, where pairs of a candidate genetic
variant and an imaging biomarker were tested for association
via standard statistical tests. Examples include using activation
maps of the prefrontal cortex to find SNPs associated with
schizophrenia [8] and searching for changes in regional gray
matter volumes correlated with the genetic risk of Alzheimer’s
disease [7], [9].

More recently, genome-wide voxel-wise analysis has been
demonstrated using univariate methods [10]. However, massive
univariate analysis has several limitations. Due to multiple
comparisons, a conservative corrected significance level is
selected to limit the false positive rate, but this correction
dramatically reduces the power of the test. Moreover, the
univariate methods are unlikely to identify weaker variants that
jointly create an additive effect. Multivariate techniques aim
to overcome shortcomings of univariate analysis [11], [12].

A common approach is to use a multivariate regression
combined with a regularization to extract a sparse set of
coefficients for correlated genetic variants and image fea-
tures. Various forms of relationship between imaging and
genetic data along with different regularization terms have
been proposed in the literature. For example, it is common
to assume that image and genetic data lie in a joint hidden
(latent) space. This is equivalent of enforcing different forms
of low rank regularization on data: sparse reduced rank re-
gression (sRRR) [12], [13], Partial Least Squares (PLS) [11]
or Canonical Correlation Analysis (CCA) [11]. Unfortunately,
these unsupervised methods do not use the clinical labels
(e.g., diagnosis) directly, and thus the detected genetic markers
and image features are not immediately related to the dis-
ease of interest. The image features relevant to the disease
are selected separately by modeling the relationship between
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image features and the phenotype of interest. For example,
sRRR has been demonstrated using brain regions pre-selected
for Alzheimer’s disease (AD) via Linear Discriminant Analy-
sis [13].

In contrast, we model and estimate relevant genetic variants
in the context of abnormal variations that are characterized
by imaging features. Our method is broadly applicable to
any imaging biomarker, such as anatomical regions, tissue
appearance, or functional measures. Here, we demonstrate
our method in application to Alzheimer’s disease, and use
thickness of cortical regions and the volume of sub-cortical
structures as image features.

We define a probabilistic model to encode the relationship
among genetic, image and disease measures. Our model in-
corporates a common assumption made by genetic studies
that only a small set of genetic variants is associated with
any particular disease, leading to sparsity-inducing priors.
The relevant subset of genetic markers induces variation in
certain image-based features, and a subset of these measures
exhibits changes that are discriminative with respect to the
disease phenotype. Therefore, in our model if a brain region
is irrelevant for the target disease, it is ignored even if it is
strongly modulated by genetics. We also derive an efficient
inference algorithm to identify relevant brain regions and
genetic loci, and demonstrate the method on synthetic data
and real data from the ADNI study [14]. We demonstrate that
our algorithm outperforms standard univariate and regression
analyses for genetic variant detection on synthetic data and
yields promising results in a real clinical study. This paper
extends our publication of the preliminary results [15] by
deriving a novel robust inference algorithm. It also expands
the empirical evaluation.

The remainder of this paper is organized as follows. In the
next section, we build a graphical model that captures the
relationship among image, genetic and diagnostic variables.
In Section III, we propose an efficient algorithm to perform
inference of the model. Derivation details are discussed in
the Supplementary Material. Section IV and Section V report
experimental results on simulated and real data, respectively.
We conclude the paper with a discussion of the results and
future directions in Section VI.

II. METHOD

A. Notations and Terminology

Throughout this paper, we use regular fonts (e.g., x, ⌧ ) and
bold fonts (e.g., x, ⌧ ) to denote scalar and vector, respectively.
Some uppercase letters are reserved for the number of ele-
ments: e.g., N is the number of subjects, M is the number of
image regions, and S is the number of SNPs. In such cases,
their lowercase counterparts are used for enumeration: e.g.,
subject n, image region m, and SNP s. Uppercase bold letters
are used to denote matrix variables (e.g., V 2 RS⇥M ); in
such case V:m and V

s: denote the column m and row s of
the matrix V, respectively. We use V

sm

to refer to the entry
in the row s and column m of V. Superscripts are used to
denote iterations of the algorithm (e.g., bt) or transpose (e.g.,
X

T ). E [·] and p(·) denote expectation and density. Table I
summarizes all variables used throughout this paper.

Model Variables: Image to Disease Phenotype

xnm Image feature m in subject n
(brain endophenotype featue).

yn Disease phenotype (diagnosis variable / class label)
of subject n: �1 - healthy, 1 - diseased.

bm 2 {0, 1} Indicator variable that selects image
feature m.

f Latent function drawn from a Gaussian Process to
predict y from image feature vector x.

� Prior probability for selecting image features.
Model Variables: Genetics to Image

gns Genetic variant s in subject n.
!m Regression coefficient vector for predicting

image feature m using the genotype.
asm 2 {0, 1} Indicator variable that selects SNP s for

modeling image feature in region m.
↵ Prior probability for selecting genetic variants.
�

2
! Variance of an element in !m.

�

2
0 Variance of noise in the genetics to image

regression for the relevant regions.
Variational Variables

⇢m Posterior probability of selecting feature m.
⌧s Posterior probability of selecting SNP s.
⌫, & Mean and variance parameters of

the genetics-to-image regression.

TABLE I: Notation and variables used throughout the paper.

B. Model
We are motivated by anatomical brain studies with bi-

nary phenotypes (�1 or 1), but the analysis applies to any
biomarker derived from images and the constraint on the
phenotype can be easily relaxed. We assume that a study
contains N individuals, each with three measurements:

• disease phenotype y 2 {�1, 1} that indicates healthy vs.
disease;

• image measurements, x 2 RM , which are usually re-
ferred to as “intermediate phenotype”. In the context of
AD, image features include volume or thickness measure-
ments of M brain structures.

• genetic variants g 2 RS at S locations along the genome;
We assume that a subset of image features is modulated

by genetics and is closely related to the disease phenotype.
Detecting and utilizing such imaging features can improve the
detection of relevant genetic variants.

We model two types of relationships, illustrated Fig.1: 1)
the association of a subset of brain regions with the diagnosis
variable y, which can be quantified by the quality of the
disease prediction from image features; 2) a modulation of
each image feature by the genotype. A common approach is to
consider these two relationships separately, selecting relevant
brain structures and then performing a statistical test (e.g., t-
test or sparse regression) to identify the relevant genotype [13].
In contrast, we propose a model to perform these two steps
jointly, via two coupled regression models:

• A sparse subset of imaging features selected by b 2
{0, 1}M is related to the diagnosis variable y via a logistic
regression model. For each region, we model its elements
(i.e., b

m

) using a Bernoulli distribution (Section II-C).
• Variations in image features for region m can be ex-

plained by a sparse subset of the genotype which is
selected by a

m

2 {0, 1}S . Similarly, we model its
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Fig. 1: A schematic illustration of the relationship between genetic,
imaging and clinical measures in our model.

elements (i.e., a
sm

) via a Bernoulli distribution (Section
II-D).

We treat the indicator variables {a
m

}M
m=1 and b as latent. The

graphical model in Fig.2 presents the relationships among all
variables in the model. One can view the model shown in Fig.2
as two-layers of regression that share latent variables for the
image data. Below, we first define the relationship between
image features and the disease phenotype and then specify
the generative model for the relationship between SNPs and
image features. We do not model a direct link between genetic
variants and disease label. It is captured indirectly through
image features. The general idea is illustrated in Fig.1.

C. From Imaging Features to Disease Phenotype
To predict the binary class label y from a sparse set of image

features x, we use a variant of the log-odds model:

log

⇢
p(y = 1|f,b,x)

1� p(y = 1|f,b,x)

�
= f (x� b) , (1)

where � is the element-wise product, b 2 {0, 1}M is the
latent variable that selects relevant regions, and f(·) is a latent
stochastic function. In effect the operation x � b masks out
the irrelevant features.

We assume exchangeable Bernoulli prior for b. In other
words, we model selection of each region as a biased coin
flip, i.e., p(b

m

) = �bm
(1 � �)1�bm , where � is the prior

probability of including a brain region. We use the Gaussian
Process (GP) as a prior for f [16]. A Gaussian Process is a
random process where any finite sample set is distributed as
a multi-dimensional Gaussian distribution. GP is completely
defined by its prior mean and covariance functions, i.e.,
f(x� b) ⇠ GP(m

b

(x), k
b

(x,x0
)), where

m
b

(x) = E[f(x� b)],

k
b

(x,x0
) = E[(f(x� b)�m

b

(x� b))

T

(f(x0 � b)�m
b

(x

0
))].

We assume m
b

(x) = 0 since y 2 {�1, 1} and we do not
aim to induce a bias toward either label. The covariance
function k(·, ·) is the crucial part of a GP. There are several
well-known choices for k(·, ·) such as Linear k(x,x0

) = x

T

x

0,
or Squared Exponential k(x,x0

) = exp

⇣
�kx�x

0k2
2

2�2

⌘
. We use

the linear kernel in this paper, setting k(x,x0
) = x

T

x

0. The ex-
pression on the left hand side of Eq. (1) specifies the likelihood
(i.e., the link function). For example, a straightforward change
from the logistic likelihood to a Gaussian likelihood enables

modeling continuous clinical measurements (e.g., cognitive
scores).

D. From Genetic Variants to Imaging Features
An imaging feature m is either relevant to the disease

(b
m

= 1) or not (b
m

= 0). In modeling the relationship
between genetics and imaging, we treat these cases differently.
If feature m is irrelevant (b

m

= 0), we model the variation in
the region as a Gaussian distribution centered at zero with
a fixed standard deviation of one: x

m

⇠ N (·; 0, 1). This
assumption is not limiting, since we can always normalize
the samples to have zero mean and unit variance. The normal
distribution can be replaced by a different distribution if
needed. One can view this assumption as our null distribution.
If feature m is relevant for disease prediction (b

m

= 1),
variations in the values of this feature are explained by a sparse
subset of the genetic variants g 2 RS . We define a

m

2 {0, 1}S
to be a vector of latent Bernoulli random variables that specify
a subset, or mask, of relevant genetic markers for region m,
and arrive at the second regression component of our model:

x
nm

= !T

m

(g

n

� a

m

) + ✏
nm

, (2)

where !
m

is the vector of regression coefficients, ✏
nm

⇠
N (·; 0,�2

0) is the iid residual noise in the image feature m
for subject n. Adopting Bayesian variable selection based on
the spike-and-slab model [17], [18], we assume a Gaussian
distribution with zero mean and variance �0�!

as a prior for
the regression coefficient !

m

. This choice of parameterization
facilitates derivations explained in the Section III. Similar to
the indicator variable b that selects image features, we assume
exchangeable Bernoulli distribution as a prior for a

m

:

p(a
sm

;↵) = ↵asm
(1� ↵)1�asm , (3)

where ↵ is the prior probability of including any SNP in the
model.

Combining, we obtain the likelihood of the image feature m:

p(x
nm

|b
m

,a
m

,g;!
m

,�2
0) =(

N (x
nm

; 0, 1), if b
m

= 0,

N (x
nm

;!T

m

(g

n

� a

m

) ,�2
0), if b

m

= 1.
(4)

The first line of Eq. (4) assumes a simple normal distribution
as a null model. To handle cases where a non-disease related
genetic variants affect a relevant region (i.e., b

m

= 1), we
assume that the effect of the normal genetic variants along with
other covariates (e.g., age, gender, etc.) are already subtracted
from the data and Eq. (4) models the normalized residual.
More explicitly, we fit a regression model on all measured
nuisance variables in a normal population. x

nm

represents the
residual of the regression which presumably regresses out all
of the nuisance variables.

E. Complete model
We define Z = {f,b,a1, · · · ,am,!1, · · · ,!m

} to be the
set of latent variables, D = {X,y} to be the set of data
variables that we model, and ⇡ = {�2

0 ,�
2
!

,↵,�} to be the set
of hyper-parameters. We use y = [y1; · · · ; yN ] to denote the
set of all clinical phenotypes (class labels) and X 2 RN⇥M
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(a)

(b)

Fig. 2: (a) Graphical representation of the generative model. Hollow
circles (�) denote random variables, small solid circles (·) represent
hyper-parameters, and shaded circles represent observed variables.
The black plates indicate conditionally independent instantiations.
More specifically, ↵, �, �! and �0 are the hyper-parameters. The
dashed boxes illustrate the different parts of the model. (b) Instead of
plates, the repetition of the random variables are shown explicitly. To
avoid the visual clutter, the hyper-parameters are not shown. The blue
and the red paths show so-called v-structure dependence. It means
that those variables are conditionally dependent hence the posterior
values for those variables are related.

and G 2 RN⇥S are respectively image and genetic data of
all subjects where each row is a subject and each column
represents a measurement from one brain region (for X) or
genotype from all loci (for G). Since the hyper-priors are
treated slightly differently during inference, in this section we
focus on the structure of the conditional probability given the
hyper-parameters: p(D,Z|⇡;G) (see the Supplementary Ma-
terial). Combining the elements of the model in Eqs. (1)-(4),
we construct the joint distribution of the hidden variables Z
and modeled variables D:

p(D,Z|⇡;G) = p(f)

MY

m=1

p(!
m

|⇡)p(b
m

|⇡)
SY

s=1

p(a
sm

|⇡)

⇥
NY

n=1

p(y
n

|f,b, x
nm

;⇡)p(x
nm

|b
m

,a
m

,!
m

; g
ns

,⇡). (5)

In the next section, we focus on specifying hyper-
priors p(⇡).

F. Hyper-priors

For clarity of presentation, Fig.2 presents the model but does
not specify the priors for ↵, �, �0, and �

!

. Here we define
the prior distributions for each parameter of the model.

Prior Over Inclusion of SNPs ↵: We assume the conjugate
prior for ↵ 2 (0, 1), namely a Beta distribution. The shape
parameters of the Beta distribution are chosen to ensure
an almost flat distribution over the entire interval (0, 1) as
illustrated in the experimental section.

Prior Over Variance of Residual �0: It is common to
assume an uninformative prior distribution2 for the variance
of residuals [19]. An uninformative prior for �0 is propor-
tional to 1

�

2
0

, which can be achieved via an inverse Gamma
distribution as the scale and shape priors approach zero [20],
i.e., �0 ⇠ IG(◆1, ◆2).

Prior Over �
!

: Instead of directly imposing prior on �
!

,
we follow the approach of assuming a flat prior for Proportion
of Variance Explained (PVE) in the response that consequently
induces a prior on the parameter �

!

[17], [21]. The underlying
logic is that there might be a large number of SNPs with small
PVE’s or small number of SNPs with large PVE’s; hence we
assume a flat prior over PVE. Assuming that the columns of
the genetic data matrix G are centered, the PVE of the genetic
variants for image feature m is defined as follows:

PVE
m

:=

��2
0

1
N

P
N

n=1 (Gn:!m

)

2

1 + ��2
0

1
N

P
N

n=1 (Gn:!m

)

2

A rough estimate of the expectation of PVE (i.e., integrating
!

m

out) can be represented to be:

dPVE
m

=

↵
�

2
!

�

2
0
%

⇣
1 + ↵

�

2
!

�

2
0
%
⌘ , (6)

where % =

1
N

P
N

n=1

P
S

s=1 g
2
ns

is the sum of the sample
variances of the genetic data at all S loci. We assume a uniform
prior over dPVE [17]. This prior aids interpretation as it applies
stronger shrinkage in models with more non-zero regression
coefficients [21].

We leave the prior � for selecting image features as a non-
random hyper-parameter whose effect on the final results will
be studied empirically in the experimental section.

G. Joint Modeling Image and Genetics vs. Two-Step Inference
Our method jointly models imaging and genetic variations.

To clarify the concept, we first explain the so-called “two-
steps” method in the context of our algorithm. A two step
approach (e.g., [13]) first selects a subset of brain regions
(columns of X). This can be done using a univariate or
multivariate approach. A univariate approach seeks a Maxi-
mum a Posterior (MAP) estimate to the following formulation
accounting for each column separately:

p(b
m

|y,X:,m)

| {z }
posterior

/ p(y|X:,m, b
m

)

| {z }
Likelihood term

p(b
m

)| {z }
prior

, (7)

where b
m

is an indicator variable with 1 indicating relevance,
and 0 not; and X:,m is the column m of X, corresponding
to the features from brain region m. Assuming uniform
prior, most univariate methods find the most likely region
by testing the likelihood term for b

m

= 1 or b
m

= 0, i.e.,
p(y|X:,m, b

m

= 1) 7 p(y|X:,m, b
m

= 0).

2An uninformative prior is a prior that is not subjectively defined and can
express objective information such as “the variable is positive.”
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Unlike univariate approaches, a multivariate method con-
siders all variables at the same time to find MAP or posterior
probability of this form:

p(b|y,X) / p(y|X,b)| {z }
Likelihood term

p(b)|{z}
prior

, (8)

where b is a m-dimensional binary hidden vector that denotes
the relevance of the M image regions together.

Although the posterior value depends on all brain regions
(simultaneously), such model does not account for the genetic
variations. Our model specifically addresses this problem. The
graphical model in Fig.2a implies that the posterior probability
of the brain regions takes the following form:

p(b|y,X,G) / p(y|X,b)| {z }
Likelihood of imaging data

⇥ (9)

⇥ p(X:,m|{a
m

}M
m

;G)p(a
m

)

| {z }
Posterior of the genetic to imaging model

p(b)|{z}
prior

log p(b|y,X,G) = log p(y|X,b)| {z }
contribution of imaging data

+ log p(b)| {z }
prior

+

log p(X:,m|{a
m

}M
m=1;G) + log p(a

m

)

| {z }
contribution of genetic data

+ constant (10)

where the values of the posterior distribution are in-
fluenced by both diagnosis p(y|X,b) and genetic data
p(X:,m|a

m

;Gp(a
m

)) simultaneously.
Another way to understand the simultaneous aspect of the

model is to study the dependency structure of random variables
by following the dependency paths in the graphical model.
For the sake of better visualization, we have expanded the
graphical model of Fig.2a to Fig.2b by removing the plates
and explicitly visualizing the random variables. The so-called
v-structure dependency (see [22]) between indicator variables
of the brain regions (b

m

’s) means that given the diagnosis
variable y, relevance values of different brain regions are
conditionally dependent. This dependency is encoded in the
posterior probability. Also there is v-structure dependency
between indicator of a brain region b

m

and indicator variables
of the genetic loci (a

m

).

III. INFERENCE

Our goal is to compute the posterior probability distri-
bution p(Z|D;G,⇡) of the latent variables that summarize
genetic and imaging influences in our model. Because of
coupling of variables in the joint model, computing the pos-
terior distribution is intractable, necessitating approximations
via sampling or variational methods. Due to the amount
of data and its dimensionality, we use the computationally
more efficient approach of variational inference [23]. Three
important quantities of the model require further explanation.
These three quantities will be used later in the inference
section:

1) Diagnosis Likelihood p(y|b;X,⇡) : Assuming that b

is observed, this value is the marginal conditional likelihood
of the diagnosis model. We use the term marginal conditional
since it is conditioned on b and the f is marginalized out.
For logistic likelihood Eq. (1), this value does not have

a closed-form solution but can be approximated efficiently.
To approximate this quantity, one can use Gaussian process
classification with linear kernel and approximate the marginal
likelihood. We use the expectation propagation to approximate
it ( [16], Section 3.6).

2) Imaging Likelihood p(X:m|b
m

;G,⇡): A straightfor-
ward manipulation of Eq. (4) leads to:

log p(X:m|b
m

;G,⇡) =

NX

n=1

logN (x
nm

; 0, 1)+

b
m

 
log p(X:m|b

m

= 1;G,⇡)�
NX

n=1

logN (x
nm

; 0, 1)

!
(11)

where the first line corresponds to the null model, and
log p(X:m|b

m

= 1;G,⇡) is the marginal conditional likeli-
hood of the imaging features given genetics where the latent
variables a

m

and !
m

are marginalized out. In general, the
marginal likelihood does not have a closed-form but there are
several methods to approximate it using Markov Chain Monte
Carlo, variational approximation, and Annealed Importance
Sampling (AIS) [24]. We adopt the method proposed in
[17] specifically for large-scale regression with a spike-and-
slab prior. The algorithm combines variational approximation
with importance sampling as derived in the Supplementary
Material.

3) Posterior Probability p(b|D;G,⇡): This function quan-
tifies the posterior probability of the relevance of the brain
regions given the data. p(b|D;G,⇡) is a function that assigns
the posterior probability to all 2M possibilities of the indicator
vector b for M brain regions. Estimating p(b|D;G,⇡) is
the key component to approximating the posterior distribution
of the entire model. Two quantities mentioned earlier are
combined in this term:

p(b|D;G,⇡) / p(b,D;G,⇡) = (12)

p(y|b;X,⇡)| {z }
diagnosis

MY

m=1

p(X:m|b
m

;G,⇡)p(b
m

;⇡)

| {z }
Imaging

Computing the normalization constant entails a sum over all
possible subsets of [M ] := {1, · · · ,M} which is computa-
tionally infeasible. We resort to a variational approximation to
compute the posterior distribution.

A. Fixed-Form Variational Learning
A variational method approximates the posterior distribution

of the latent variables in the model. It seeks a specified form
of the approximating distribution q that minimizes negative
of the so-called variational free energy. This quantity lower
bounds logarithm of the so-called evidence (i.e., p(X)), hence
called evidence lower bound (ELBO). It can be shown that
the objective is the Kullback Leibler divergence between an
approximating distribution q and the joint distribution of the
model. We approximate p(b|D;G,⇡) with a function of the
following form:

q(b;⇢) =
MY

m=1

q(b
m

; ⇢
m

) =

MY

m=1

⇢bm
m

(1� ⇢
m

)

(1�bm),(13)
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where ⇢ is the parameters vector of the approximate posterior
distribution. To learn ⇢, we adopt the stochastic approximation
algorithm proposed by Salimans and Knowles [25]. An impor-
tant property of the framework is that it enables approximating
of the posterior as long as there are efficient algorithms to
sample from the assumed-form of the approximating distribu-
tion q and to evaluate the joint likelihood. These properties
can be helpful for approximating distributions that are not
fully factorizable. In our case, the form of the approximate
posterior is fully factorizable but the framework allows for
further extensions in the future. We first review this general
framework.

In structured or fixed-form variational Bayes [26], the
approximating distribution is chosen to be a specific
member of an exponential family, namely q(b;✓) =

exp

�
✓TT (b)� U (✓)

�
⌫ (b) where T (b) is the sufficient

statistics, U(✓) is the log partition function, ⌫(b) is the
base measure and ✓ are the natural parameters. To represent
Eq. (13) in this form, we set

T (b) := b, ⌫(b) := 1,

✓
m

:= log

⇢
m

1� ⇢
m

, U(✓) :=
X

m

log(1 + exp(✓
m

)).

Note that ✓ is the transformed version of parameter ⇢, intro-
duced for notational convenience.

Variational methods find the optimal parameters by mini-
mizing the divergence:

✓⇤
= argmin

✓
E
q

[log q✓(b)� log p(b,D;G,⇡)] . (14)

For notational convenience, we define q̃✓̃ := exp(

˜

b

T

˜✓)
where ˜✓T

=

⇥
✓T , ✓0

⇤
and ˜

b

T

=

⇥
b

T , 1
⇤
. If ✓0 = �U(✓), then

q̃ is the normalized posterior, otherwise it is an unnormalized
version [25]. Taking the gradient of the objective with respect
to ˜✓, we obtain:

r✓̃Eq̃

⇥
log q̃✓̃ (b)� log p (b,D)

⇤
=

R
q̃✓̃(b)

h
˜

b

˜

b

T

˜✓ � ˜

b log p(b,D)

i
d⌫.

By setting the equation above to zero, Salimans and
Knowles [25] linked linear regression and the variational
Bayes method. Namely, the optimal solution ˜✓ should satisfy
the linear system of equations:

C

˜✓ = g,

where C = E
q

h
˜

b

˜

b

T

i
and g = E

q

h
˜

b log p (b,D)

i

are estimated by weighted Monte Carlo sampling. More specif-
ically, in iteration t of the algorithm, we sample from the
current estimate of the posterior distribution, q✓̃t parameterized
by ✓t, and replace C and g with an empirical estimate.
Salimans et al. [25] suggested to sample one instance from
the q and update C and g as follows:

g

t+1
= (1� w)gt

+ wbgt,

C

t+1
= (1� w)Ct

+ wbCt, (15)

where w 2 [0, 1] is the step size and bgt and b
C

t are the
empirical estimates of g and C using the sample ebt:

b
g

t

=

e
b

t

log p
�
b

t,D
�
,

b
C

t

=

e
b

t e
b

t

T

.

Fig. 3: Summary of the simulation setup. For both healthy subjects
and diagnosed patients we split the genome into three regions, and
the image into six regions of four types.

With minimal assumptions on the objective function, Ne-
mirovski [27] showed that with a constant step size w :=

1p
N

along with averaging parameters of the last N/2 iterations,
this procedure leads to asymptotic efficiency of the optimal
learning sequence wt

= ct�1.
For the pseudo-code of the inference algorithm and detail

of derivation, please see the Supplementary Material.

IV. SIMULATION

We evaluate our model on synthetic data using univariate
tests and the sRRR method [12] as baseline algorithms. We
also illustrate our method on the ADNI dataset, where we re-
cover several top SNPs associated with the risk of Alzheimer’s
Disease.

We generate synthetic data to match a realistic scenario as
much as possible. Specifically, we generate a disease case-
control cohort with images and genetic variants for each
subject. We refer to the minor allele frequency (MAF) as the
frequency of the less common allele in the population at a
particular genetic location. A genetic marker (or SNP) g

ns

is represented by the count of minor alleles at location s in
subject n, i.e., g

ns

2 {0, 1, 2}. We employ the widely used
population genetics software package PLINK [28] to simulate
1,020 SNPs with a minor allele frequency uniformly sampled
from an interval [0.05, 0.95] for 400 healthy subjects and 400
patients. For SNPs relevant to the disease, the heterozygote
odds ratio is defined as the ratio of patients to controls with
g
ns

= 1, normalized by the same ratio for g
ns

= 0. Similarly,
one can define the homozygote odds ratio. These ratios control
the disease risk in the patient population.

The simulated SNPs are split into three sets:
• Set G1 includes 20 disease causative SNPs that affect

selected areas of the simulated images. We use an odds
ratio of 1.125 for heterozygote SNPs, with a multiplica-
tive homozygote risk.

• Set G2 includes 20 SNPs that are irrelevant for the disease
(i.e., odds ratio is 1) but affect other areas in simulated
images.

• Set G3 includes 980 null SNPs that are independent of
both the disease label and the images.
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Fig. 4: Summary of the results on simulated data. (a) Detection rates
for our algorithm (blue), the supervised sRRR (green), CCA (orange),
and genetic t-test (red) as a function of image noise for causative
SNPs in G1 at a false positive rate of 1%. (b,c) ROC curves for
low (�2

noise = 0.06) and high (�2
noise = 1.7) noise levels respectively,

up to the selected false positive threshold of 1%. The green shows
the results of sRRR where any variant that has non-zero weight is
considered a hit, and we vary the sparsity parameters. (d) ROC curve
for the detection of relevant imaging regions for low (�2

noise = 0.06)
noise level.

Based on the class labels and the genetic variants, we
generate image voxels, organized in several sets:
• Voxels in set I1 are affected by the causative SNPs (G1),

and thus are indirectly associated with the disease. These
voxels are separated into three regions. Voxel intensity in
this set is correlated with genetics:

cr
nk

= w

T

r

g

G1
n

+ ✏r
nk

, 1  r  3, (16)

where cr
nk

is the intensity value of voxel k in region r
for subject n. The region weights w

r

are drawn from a
normal distribution N (·; 0, 1), and ✏r

kn

is Gaussian noise.
Our experiments explore a range of values for the noise
variance �2

noise

.
• Voxels in set I2 are determined by non-causative SNPs

G2, and thus are irrelevant for disease. We dedicate one
region to this category:

c4
nk

= w

T

4 g
G2
n

+ ✏4
nk

. (17)

• Voxels in set I3 are related to the disease but are not
related to genetic markers, and are therefore not helpful
in causative SNP detection. In fact, such features confuse
the detector as they get selected as relevant to disease at
the cost of features in I1. We generate these voxels as
follows:

c5
kn

⇠
(
N (0.5, 1), if y

n

= 1,

N (�0.5, 1), if y
n

= 0.

• Voxels in set I4 are not relevant for either the disease
label or genetic markers. These voxels are sampled from
N (0,�2

noise

).
A summary of the simulation setup is shown in Figure 3.

We use the synthetic data to evaluate detection of causative
SNPs with our method. As a first baseline method, we perform
the univariate Bonferroni corrected t-test directly between

SNPs and disease labels, omitting images. As a second base-
line, which we refer to as supervised sRRR, we perform
univariate voxel filtering using disease label, followed by the
sRRR multivariate regression between the surviving voxels
and the genetic variants to recover relevant SNPs [12]. We
compare the methods in different image noise regimes by
varying the variance �2

noise in Eqs (16)- (17), and run 20
different independent simulations for each noise regime. We
have also applied CCA, which can be viewed as sRRR but
without sparsity regularization.

Fig.4 reports the performance of all four methods for an
odds ratio of 1.125. To illustrate the behavior of the methods
for different false positive rates, we report the receiver oper-
ating characteristic at two different noise levels. In supervised
sRRR, we observe that using a standard univariate filtering
p-value cutoff of 5% eliminates too many image regions and
does not successfully allow for detection of genetic variants,
leading to poor performance. We increased the success rate of
sRRR by keeping the top 40% of regions sorted by their p-
values. We found that sRRR results were robust when varying
this parameter in a range around this larger percentage of
regions to be included in the method. To set the detection
thresholds, we fix the false positive rate to 1%. We observe
similar behavior for a broad range of low false positive
rates (not shown). We focus our experiments on low false
positive rates because at higher rates false detections become
comparable with, and ultimately overwhelm true detections,
since there are so few relevant variants. We find that for a given
false positive rate, our algorithm detects significantly more
disease causative SNPs in G1 than the baseline algorithms,
and has lower standard deviation than the supervised sRRR
pipeline. The results of the CCA is consistently inferior with
respect to sRRR. Given that sRRR can be viewed as CCA with
sparsity constraints, this results emphasizes the importance of
the sparsity regularization. The direct univariate t-tests only
detect SNPs that have a very strong independent association
with the disease label.

As more noise is added to the image, a two-step method
starts to miss relevant regions across the image, which conse-
quently degrades its detection rate on the genetic side. Our
approach exploits other sources of information to compute
the posterior probability of relevance. Namely, the p(b|D)

has two terms. The second term in Eq. (10) summarizes the
contribution of the genetic data which helps to compensate
for the “image noise”. In addition, genetics-to-image part of
our model employs a powerful approach based on spike-and-
slab prior. One can view spike-and-slab prior as a mixture
of `0 and `2 regularization. This experiment shows that such
regularization tends to perform better than `1 used in the sRRR
approach. Better regularization and richer model explain the
increased robustness of our approach compared to the “two-
step” method.

V. ALZHEIMER’S DISEASE DATA

A. Data and Preliminary Evidence
Before applying our method to real data, we familiarize

the reader with the data by demonstrating evidence of the
association between the clinical diagnosis y, image data X,
and genotype G using a baseline approach.
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We used clinical data from the ADNI study without focusing
on a specific sub-group. ADNI is a large-scale study; the
details on the study participants can be found elsewhere.
The cohort includes 179 Alzheimer’s patients (AD) and 198
healthy subjects (healthy) to the total of 377 subjects. We
employed FreeSurfer image analysis suite3 to process the MRI
scans and produce segmentations and volume measurements
for an array of regions (cortical and sub-cortical) that cover
the entire brain. For details of these regions, please refer to
Cortical ROIs4, Desikan ROIs5 in the FreeSurfer documenta-
tion. The technical details of these procedures are described
in [29], [30], [31], [32], and [33].

To extract genetic variants, the standard quality control was
applied to remove rare genetic variants or variants violating
the Hardy-Weinberg Principle [28]. To reduce the number
of SNPs considered by the algorithm, we removed SNPs that
are unlikely to be associated with AD. We first imputed our
genotype data to the 1000 Genomes panel using MaCH [34],
then kept only SNPs whose p-value (as measured by a large-
scale meta-analysis of AD [35]) was below a liberal threshold
(10�3), yielding 15,788 SNPs.

Fig.5 reports histograms of image features in four repre-
sentative brain regions for the two cohorts of healthy and
AD subjects. Two of these regions are highly relevant to
the disease (entorhinal cortex and hippocampus [36]) while
the other two have been less reported (putamen [37] and
caudate) in the context of Alzheimer’s disease. While the
distribution of the cortical thickness in the left entorhinal
cortex is strongly segregated across two cohorts, the right
putamen and the left caudate volumes show weak or almost
no statistical difference between the two populations. The
entorhinal cortex is an important brain region responsible
for declarative memories and memory consolidation and is
implicated in early Alzheimer’s disease [38].

To experiment with a classical baseline Genome-Wide As-
sociation (GWAS) methods, we fit several Generalized Linear
Models (GLM) using the genotype G as the design matrix. In
Fig.6, we used the image features from the four brain regions
in Fig.5 as the response variable to the GLM. The Manhattan
plot in Fig.6 shows � log10 p-value for the genetic loci tested;
the different shades of gray indicate different chromosomes.
Despite the strong separation between healthy and AD in the
left entorhinal cortex, no SNP passes the Bonferroni-corrected
significance threshold. Nevertheless there is an indication
for APOE variants. APOE is the only SNP that passes the
significance level after the Bonferroni correction when the
volume of the left hippocampus (Fig.6d) or clinical diagnosis y
(not shown) are used as the response variables. Fig.6 therefore
illustrates the limitation of classical GWAS.

B. Posterior Relevance of Brain Regions and SNPs
We applied our inference algorithm on the subset of the

ADNI dataset described above. The algorithm shown inte-
grates out the hyper-parameters through importance sampling.
Only a range of hyper-parameters should be provided to

3http://surfer.nmr.mgh.harvard.edu/
4https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
5http://freesurfer.net/fswiki/FsTutorial/AnatomicalROI
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Fig. 5: Distribution of the imaging features for four different regions
of the brain are shown. None or very weak differences can be seen
between the groups for caudate and putamen while there are very
strong differences in the volume of the left hippocampus and the
average thickness of the entorhinal cortex.

the outer loop of algorithm, which translates to a weakly
informative prior for the hyper-parameters. We choose the
range for the hyper-parameters as follows:

�0 is the variance of the residual noise for the imaging fea-
tures after they are explained by a subset of the genotype. For
�0, we searched over [0.2, 1]. Since the imaging features are
normalized to have unit variance, the variance of the residual
is upper bounded by 1. We also do not expect the genetic
variant to explain all the variance in the imaging feature,
hence we expect a residual variance. It is common to impose a
non-informative prior over �0 by assuming the inverse-gamma
distribution for �0 and setting its shape parameter to a small
quantity (here 0.05, Fig.2c in the Supplementary Materials).

For the variance of effect of individual SNPs �
!

, we
searched over [0.025, 0.4]. We do not expect a large contri-
bution by a single SNP, but small contributions by several
SNPs are possible. For this reason, the interval spans a small
range. Notice that the variance of the residual, �0, is at most 1.
In section II-F, we explained that the proportion of variance
explained (PVE) can be used to impose a prior over �

!

as
suggested in [17] (Fig.2b in the Supplementary Materials).

To investigate the prior probability ↵ of any SNP to be
relevant, the range of log10 ↵ is set to [�5,�3]. For 15,788
SNPs, this is equivalent of selecting 0.1 to 16 SNPs as relevant
to the endophenotype a priori. Two positive shape parameters
of the beta distribution are set to 1.02 and 1 respectively
which imposes almost uniform prior for the selected range
of ↵ (Fig.2a in the Supplementary Materials).

The posterior probability of the relevant SNPs (i.e.,
p(a

m

|D)) is reported in Fig.7 for the brain regions examined
in Fig.5 and Fig.6. The results of both approaches, i.e., the
proposed model and the classical approach of univariate tests,
are relatively consistent. The least informative regions such
as the caudate and putamen are assigned no SNPs by either
methods. The hippocampus, which is known to be correlated
with AD, is associated with a variant in APOE, a genetic
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Fig. 6: Manhattan plots using different response variables in the GLM (a) volume of the left caudate (b) the volume of the right putamen
(c) average cortical thickness of the left entorhinal cortex, and (d) volume of the left hippocampus. The x-axis lists the SNPs and the shades
indicate different chromosomes. The y-axis reports the negative log10 of the p-value. The vertical line denotes the statistical significance
level (0.05) after Bonferroni correction. Only APOE variants pass significance level, but only for the volume of the left hippocampus. In
spite of a clear distinction between distributions of healthy and AD for the left entorhinal cortex (Fig.5), no SNP passes the significance
level when using the average thickness of the left entorhinal cortex as a response variable.

marker known to be associated with Alzheimer’s disease. For
areas such as the entorhinal cortex, which is affected by AD
[38], the classical method shows suggestive association for a
variant in APOE, while for our method, APOE as well as a
few others, pass the significance level.

Interestingly, by computing the posterior relevance of brain
regions p(b

m

= 1|D), we can go beyond the known regions
of the brain affected by AD. Fig.9 reports the posterior
probability of brain regions being relevant jointly for the
genotype and the diagnosis. Fig.9a and Fig.9b show two
hemispheres of the brain on medial and lateral views; the color
indicates the posterior probability. Fig.8 represents the same
results via a bar-plot. The y-axis is p(b

m

= 1|D). We sorted
the regions according to the ranking produced by a classical
correlation criterion (with respect to y). We observe that the
classical statistical method and the results based on our model
are largely consistent but our method assigns high posterior
relevance to some regions that are viewed less important
according to the classical test.

We emphasize that our method does not pool the genetic risk
across ROIs. One can get a single set of posterior probability
for all SNPs by summarizing overall association (see the
Fig.10). This can be simply done by multiplying the posterior
probability of the regions by the posterior probability of
SNPs and summing over all brain regions that pass the 1

2
threshold. Interestingly, the results are consistent with pair-
wise association between genotype and diagnosis and only
APOE passes the detection threshold. However, this does not
mean that APOE is the only significant marker but it says that
APOE is the one that almost all regions agree on due to its
large effect. There is no reason to believe that genetic variants
affect all regions equally. In fact, variations across locations
is an interesting and worthy topic for further study.

In Fig.11, we investigate if regions with high posterior

(a) Left

(b) Right

Fig. 9: Posterior probability of the relevant regions (i.e., p(b|D) ) for
(a) left and (b) right hemispheres of the brain. Left and right figures
in each row represent lateral and medial views respectively. The color
indicates the value of the posterior probability, the hotter color, the
higher the posterior.

relevance are related to AD, by examinining the importance of
the features for prediction of the diagnosis. The x-axis is the
number of features incrementally included in a linear classifier
and y-axis is the cross-validation accuracy of the prediction of
the diagnosis. Different curves denote rankings of the features
according to the posterior values, correlation with diagnosis
y, or random permutations (two instances). As we add more
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Fig. 7: Posterior relevance of the SNPs with respect to (a) volume of the left caudate, (b) right putamen, (c) average thickness of the left
entorhinal cortex, and (d) volume of the left hippocampus, respectively. Compared to Fig.6. The horizontal line indicates p = 0.5.
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Fig. 8: The barplot of the posterior relevance for all 94 brain regions (y-axis). The regions are ordered according to the ranking produced by
the two sample T-test with respect to y: We conducted a t-test to examine the difference between cases and controls for each one of these
measurements and ranked them based on the t-test result.
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features, the accuracy of prediction increases. Our method
closely follows the correlation ranking which indicates that
the regions with high posterior values are closely related to
the disease while the random rankings (i.e., permutations) lag
behind and need to include many features to finally match
the accuracy of the informed methods. It is worth noting that
correlation with diagnosis y only accounts for the diagnosis
while the posterior values incorporate both genetic indicators
and diagnosis simultaneously.
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Fig. 11: Accuracy of the prediction of the disease for different number
of input features ranked by correlation with disease diagnosis (blue),
posterior produced by our method (red), and random ordering (orange
and green). While our method and the correlation method jump
quickly, it takes many more features for random ordering to match
the accuracy of the informed methods.

C. Sensitivity Analysis

In section II-F, we described the prior probabilities over
variables ↵, �2

0 , and �2
!

. The hyper-parameters of those vari-
ables are integrated out using importance sampling by gridding
the hyper-parameters over the their corresponding intervals
(see Supplementary Material). In section V-B, we explained
how to choose these intervals depending on the meaning of
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Fig. 12: (a) The number of selected image regions for different values
of the prior � (i.e.,

P
m

⇥
p(bm|D) >

1
2

⇤
). (b) The total number of

selected SNPs (i.e.,
P

s

⇥
minm [P (asm|D)] >

1
2

⇤
).

the random variables and the data. In this section, we explore
the sensitivity of the results with respect to the only remaining
parameter � that specifies a prior number of relevant image
regions. We change � from 1

94 to 94
94 . For each value of �,

we run the inference algorithm 20 times. Fig.12 reports the
results.

We examine the number of brain regions with posterior
probability higher than 0.5 computed as

P
m

⇥
p(b

m

|D) > 1
2

⇤
.

Although this quantity increases with �, the model never
chooses all regions, suggesting that some regions are not
relevant regardless of the prior.

We also report the total number of selected SNPs
(
P

s

⇥
p(a

m

|D) > 1
2

⇤
) for different values of �. The curve

plateaus at 80 quickly, suggesting that SNP selection is not
very sensitive to the value of the prior. We can choose � in a
reasonable range (depending on the application) with the least
variance in Fig.12b. In all experiments of Section V-B, we set
� =

10
94 which lies in the plateaus region in Fig.12 and has

low variance.
To study the behavior of the method empirically, we applied

the model to the volume of left hippocampus as an intermedi-
ate phenotype (Fig.13). It shows that the number of detected
SNP saturates as we include more SNPs in the model.

For 10

5 SNPs our algorithm takes about 24 hours to run.
Other than computational cost, the problem with large number
of SNPs is that the method starts missing APOE as the
most important variant. We hypothesize it is due to small
sample size and highly non-convex landscape of the objective
function. Improving the stability of the method is an interesting
direction of future research.

D. Biological pathway analysis
To investigate the molecular mechanisms through which

these SNPs may be impacting brain morphology and AD
phenotype, we mapped the 83 SNPs that were likely to target
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Fig. 13: The x-axis shows the number of SNPs included into the
model, y-axis shows the number of selected SNPs when the volume
of left hippocampus is used as the response variable in a Spike-and-
Slab model.

at least one brain region to the nearest genes on the genome
through the following procedure. We systematically filtered
the 83 SNPs for dbSNP IDs and pruned the 83 SNPs based
on linkage disequilibrium down to 77 SNPs. The pruning
algorithm looks at all possible pairs of the 83 SNPs (for
which their Pearson correlation is at least 0.2 from the 1000
Genomes Phase One European data [39]) and marks the SNP
with lower rank for removal from the list. To determine SNP
ranks, the algorithm first orders all SNPs by the number of
brain regions in which their posterior is at least 0.5, then
breaks ties based on the maximum posterior achieved in any
brain region. We then mapped all SNPs to their nearest up
and downstream protein-coding gene based on GENCODE
version 10 annotations [40]. From the resulting list of 154

genes, we used Fisher’s exact test to measure enrichment of
our AD SNPs against 1024 known human pathways (whose
size ranged from 5 to 300 genes inclusive) from the June 2011
release of the Pathway Commons database [41] (See Table I
of Supplementary Materials for the list of SNPs and genes).

We found those nearest genes are significantly enriched
in two biological pathways (↵ < 0.05, Benjamini-Hochberg
FDR), the Netrin signaling and the ↵4�1 integrin pathways.
Four genes proximal to our SNPs were direct interactors of
the Netrin-1 protein complex (PITPNA, TRIO, MAP1B and
DAPK1) within the Netrin signaling pathway. Netrin is a
highly conserved protein involved in axon development, and
is associated with negative regulation of amyloid-� production
in the brains of Alzheimer’s mice models [42], [43]. The
amyloid-� peptide is the main component of amyloid plaques
that is the hallmark of Alzheimer’s Disease.

Four additional genes either formed direct complexes with,
or directly interacted with, ↵4�1 integrin, as part of the
↵4�1 integrin signaling pathway. ↵4�1 mediates permeation
of blood barrier by leukocyte immune cells [44] and plays
an important role both biologically and as a drug target
in immune related diseases such as multiple sclerosis [45].
↵4�1 is not reported to be related to the Alzheimer’s disease
but it is consistent with recent work that suggests genetic
variants associated with Alzheimer’s disease target regulatory
elements in leukocytes and other immune cells rather than
brain cells [46], [47].

We also applied a separate regression and computed the
residual to remove the effect of covariates (age, handedness,
gender, and education). Then, we applied the algorithm on
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the residual and noticed that the enrichment is not statistically
significant. This suggests that the enrichment signal is weak
and to correct for the effect of the covariates, they should be
incorporated into Eq. (2).

VI. DISCUSSION

In this paper, we propose a Bayesian method to identify
indirect genetic associations with a diagnosis using image
phenotype. Our model integrates two components: 1) selection
of intermediate imaging phenotypes influenced by genetic
markers and relevant to the disease and, 2) quantification
of genetic associations with the disease mediated by the
imaging variables. A classical strategy is to perform these
two steps separately. First, an association analysis between
imaging variables and disease phenotype is carried out. This
step identifies imaging variables relevant to the disease status.
Then, the associations between the relevant imaging markers
and genotype data are probed. By performing these two tasks
jointly, we avoid choosing an arbitrary threshold for feature
selection.

We note that the model does not pool the genetic risk across
ROIs. SNPs associated with complex diseases tend to act on
cell type specific regulatory elements [48], suggesting that
individual SNPs may be targeting specific cell types, and there-
fore brain regions. Furthermore, brain regions exhibit unique
gene expression signatures [49] and epigenetic/regulatory sig-
natures (Roadmap Epigenomics Consortium [50]), and there-
fore would be expected to use different sets of pathways to
perform normal function.

Indeed, one can get a single set of posterior probabilities for
all SNPs summarizing overall association (Fig.10). This can
be simply achieved by multiplying the posterior probability of
the regions by the posterior probability of SNPs and summing
over all brain regions that pass a threshold of 0.5. Interestingly,
the result is consistent with pair-wise associations between
the genotype and diagnosis and only APOE passes the 0.5
threshold. However, this does not mean that only APOE is
the significant marker but rather that APOE is the marker that
almost all regions are consistently affected by.

In this paper, we assumed that genetic variants related to the
disease encode variations measurable by imaging data. This
assumption has some limitations. For example, if the genetic
variants related to the disease do not manifest themselves
on the imaging data, our method cannot detect it. Another
limitations is for the genetic variants that have both normal
and disease-related effects; such case is not identifiable by our
model but to the best of our knowledge it is not identifiable
by other approaches as well. These challenges provide fruitful
directions for future work.

In this paper, we assume that genetic variants G have
indirect associations to the disease label y. In other words,
we assume that all relevant genetic associations are already
captured by the image features. It is conceivable that some of
the variants have a direct association, i.e., their impact is not
captured by the imaging features. It is possible to extend the
graphical model to incorporate such effects by introducing a
direct connection from G to y. Such a change in the graphical
model renders the inference procedure more complex.

Our model ranks brain regions based on the amount of
variance of imaging features explained by the genotype. The
ranking of the regions gets updated according to the rele-
vance of the brain regions to the diagnosis. The proposed
procedure approximates two posterior probabilities, p(b|D)

and p(a
m

|D), denoting the relevance of image regions for
the disease and of the genotype related to those regions,
respectively.

There are two major reasons for using region-based image
features: statistical and computational. Statistically, aggregate
measures such as region-based image features provide more
robust estimators at the expense of a coarser resolution on
delineating affected brain regions. From the computational
point of view, reducing the number of brain regions (fewer
b
m

) reduces the computational cost of Algorithms 1. Every
iteration of Algorithm 1 entails solving a linear system with
O(M) (M is the number of brain regions) variables.

We use the language of directed graphical models to formal-
ize our assumptions. We use Gaussian Process (GP) to model
the diagnosis. The GP framework is flexible, enabling a range
of functions (i.e., f in the graphical model) to be used by
simply changing the kernel function. To extend the method
to regression (i.e., continuous y), one needs to modify the
likelihood function in Eq. (1) and to modify a noise model. In-
terestingly, for the regression case with the Gaussian noise, the
marginal likelihood P(y|b,D) has a closed-form solution and
one does not need to resort to Expectation Propagation (EP)
for approximation. Many noise models were investigated in
[16], deriving efficient algorithms to approximate the marginal
likelihood for many members of the exponential family.

The image-to-disease phenotype part of the model can be
extended such that the diagnosis variable y encodes finer
levels of diagnosis. For example, we can replace the logistic
regression likelihood with the ordinal logistic likelihood [51]
to encode discrete and ordered observations about the disease
(Healthy (j = 0) < MCI (j = 1) < AD (j = 2)):

p(y  j|x,⌫, ✓1, ✓2, ✓3) =
1

1 + exp(x

T⌫ � ✓
j

)

, (18)

where ⌫ and the ✓1 < ✓2 < ✓3 are the parameters of the
ordinal logistic regression and j encodes the ordinal stage of
the Alzheimer’s disease.

We model the null distribution of the image regions with a
Gaussian distribution. This assumption can be easily modified
by replacing the Gaussian distribution with any other distri-
bution depending on the application. The noise model for the
alternative hypothesis (i.e., b

m

= 1) can also be modified. The
challenge is to compute the marginal likelihood efficiently (i.e.,
P(X:m|b

m

= 1;G)). We approximate this value by the lower
bound provided by the variational approximation. Our current
implementation supports the Gaussian noise assumption for
imaging features X:m. We leave the relaxation of this assump-
tion to future work. We believe, at least for the most common
members of the exponential family, slight modification to the
variational algorithm should be possible.

The hidden random variable b encodes the relevant regions.
Therefore, the kernel depends on b. For example the linear
kernel between two samples x

i

and x
j

should be defined as

k
b

(x,x0
) = (xb)

T

(x

0
b)
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Note that b appears in the definition of the kernel. We
chose the linear kernel because of its simplicity. Although it is
possible to use a complex kernel together with a regularization,
we avoided it because of two reasons. First, this would
introduce extra parameter (e.g., kernel width in case of Radial
Basis Function). Second, the value of such parameter would
depend on an unknown parameter b. In the case of RBF,
kernel width should scale with the dimensionality of the input
vector. In our case, the input vector consists of the relevant
regions selected by the indicator variable b. Note that this is
not the case in the classical kernel-based approaches where
the prediction is the only goal but not features selection.
Previously demonstrated methods for feature selection using
kernel machines [52] lack a probabilistic model required by
our approach. Further extension of our model to those cases
is possible but beyond the scope of this paper.

In addition to minor modifications to the structure of the
graphical model compared to our previous work [15], there
are several major innovations introduced in this paper. First,
in the image-to-phenotype part of the model, we employed
the Gaussian process to model the prediction function. This
modification enables us to model the complex relationship be-
tween image and clinical phenotypes. In this paper, we focused
on the linear kernel to avoid over-fitting but in the presence
of more samples a more sophisticated prediction function
can be reliably learned. The second major contribution is in
the inference algorithm. It is more stable and scalable than
our earlier inference method in [15]. The flexibility of the
inference algorithm enabled us to go beyond conditionally
independent intermediate phenotypes. For example, we are
currently pursuing the case where intermediate phenotypes are
highly correlated. In this case, two intermediate phenotypes
(e.g., two brain regions) which are highly correlated should be
viewed as approximately one phenotype. One can account for
this phenomenon by modifying the prior probability of p(b)
of the selector variable b. As long as we can sample effi-
ciently from p(b), the inference algorithm is computationally
tractable.

Two key quantities that determine the computational com-
plexity of the inference algorithm are the marginal likelihoods
p(y|b,D) and p(X:m|b

m

= 1;G). If no value is missing
from the intermediate phenotypes, p(X:m|b

m

= 1;G) can
be computed in parallel and stored. p(y|b,D) needs to be
computed for every draw of b. We use expectation propagation
(EP), which is very fast, particularly for the small sample size
prevalent in imaging genetic applications (cf. [16] Section 3.6).

As suggested in [17], fast computation of the variational
lower bound enables us to perform importance sampling and
to integrate out all hyper-parameters other than the image
feature selection prior �. Since we have few hyper-parameters,
we only need to specify a reasonable range for each hyper-
parameter. This approach also enables us to define a weakly-
informed prior over the hyper-parameters. Depending on the
meaning of each hyper-parameter, we defined a range that
is reasonable for the application. We provide an example in
Section V-B on how to choose the intervals. In Section V-C, we
show that the total number of SNPs detected by the inference
is not very sensitive to the specific value of �.

In Section V-B, we compared the associated SNPs to the

relevant brain regions using the p-values and the posterior
probabilities. Although the p-value and the posterior proba-
bility do not have the same meaning, their suggestions about
the data are relatively consistent. We showed in Fig.6 and
Fig.7 that the less important regions such as the putamen and
the caudate do not exhibit associations in either method. Both
techniques agree on the SNPs associated with left hippocam-
pus. For the left entorhinal cortex, our method detects a few
more SNPs in addition to the APOE variants. Furthermore,
our method suggests areas to investigate further. Fig.8 showed
that posterior relevance values are mostly consistent with a
classical ranking results but the proposed method does not
require pre-selection and considers all available data.

The results reported for the univariate approach used Bon-
ferroni correction which is a common practice in genetic
association. Bonferroni correction is a conservative multiple
hypothesis correction approach in comparison to controlling
false discovery. In fact, one can further analyze the results
reported by our approach and apply the hypothesis testing
using the image features of the detected brain regions as a
response variable of a GLM and correct the results with a
method of choice. Our focus has been on how to incorporate
information from different sources, here diagnosis, imaging
and genetics data, into one model, and not on addressing
multiple hypothesis correction approaches.

VII. CONCLUSION

We proposed and demonstrated a unified framework for
identifying genetic variants and image-based features associ-
ated with the disease. We captured the associations between
imaging and disease phenotype simultaneously with the cor-
relation from genetic variants and image features in a proba-
bilistic model. Our model also produces spatial distribution of
the genetic associations. We derive an efficient and scalable
algorithm based on variational inference. We did not assume
any interaction between intermediate phenotypes (i.e., imaging
features) but our method can be extended easily to handle such
interactions. We demonstrated the benefit of simultaneously
performing these two tasks (i.e., finding relevant genetic and
brain regions) in simulations and in a context of a real clinical
study of the Alzheimer’s disease.
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I. FURTHER EXPLANATION ABOUT THE EXPERIMENTS ON
ADNI

Fig.1 shows the probability densities of the hyper-
parameters used for the ADNI dataset.

List of the SNPs and the corresponding genes are provided
in the Table I.

II. VARIATIONAL BAYES TO APPROXIMATE THE
POSTERIORS

The pseudo-code for our inference algorithm is shown in
Algorithm 1, where γ is a M -dimensional vector of Bayes
Factor computed as follows:

log p(X:m|bm;G, π) =

N∑
n=1

logN (xnm; 0, 1)+

bm

(
log p(X:m|bm = 1;G, π)−

N∑
n=1

logN (xnm; 0, 1)

)
(1)

The computationally difficult term in the equation is the
marginal likelihood, p(xm|bm = 1;G, π). Exact computa-
tion of the marginal likelihood is computationally intractable.
However, it is common to approximate it with a lower bound
of the variational energy [1]–[3]. We follow the variational
mean-field method proposed by Carbonetto et al. [4] with a
slight modification to approximate p(X:m|bm = 1;G, π). To
be self-contained, we first briefly summarize the method in
[4]:
• We descretize the hyper-parameter space of the imaging

part of the model, i.e., π′ := {log10 α, σ
2
0 , σ

2
ω} ⊂

π into uniform grids, namely [α(min), α(max)] ×
[σ2

0(min), σ2
0(max)]×[σ2

ω(min), σ2
ω(max)]. Let us call the

grid points π′(1), · · · , π′(L), where every tuple π′ =
(α(i), σ2

0(i), σ2
ω(i)) is a set of hyper-parameter values.

• Since the space of the hyper-parameters is low dimen-
sional, importance sampling is a simple and effective
way to integrate out the hyper-priors with a reasonably
small number of samples. The proposal distribution is

* Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/
how to apply/ADNI Acknowledgement List.pdf
** Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

chosen to be a uniform distribution over a sufficiently
large range, i.e., p̃(π′(i)) = p̃(π′(1)), where p̃(·) is the
proposal distribution.

• Given a set of hyper-parameter values π′(i), a mean-field
approach is used to approximate the marginal likelihood,
p(xm|bm = 1;G, π′), via the variational lower bound.
Briefly, the mean-field method maximizes the following
objective function:

log p(x|b = 1;G, π′)

≥ F (π′; ς,ν, τ ) ≡ Eq
[
log

p(x,ω,a|G, π′)
q(ς,ν, τ )

]
= −N log (σ0)− ‖x−Gr‖2

2σ2
0

− 1

2σ2
0

S∑
k=1

(
GTG

)
kk

Varq[ωk]

−
S∑
k=1

τk log
(τk
α

)
−

S∑
k=1

(1− τk) log

(
1− τk
1− α

)

+

S∑
k=1

τk
2

[
1 + log

(
ς2k

σ2
0σ

2
ω

)
− ς2k + ν2k

σ2
0σ

2
ω

]
(2)

where ς,ν, τ are the parameters of the approximate
posterior, q and r := E[ωq] = τ � ν and Varq[ωk] =
τk(ς2k + ν2k)− (τkνk)

2.
• Finally, the importance weights, ζ(i)’s, are normalized.

For each of ς,ν, τ , a weighted sum over all π′(i) is
computed as an approximation to integrating out the
hyper-parameters.

This procedure needs is run for every brain region. The
pseudo-code of the algorithm is shown in Algorithm 2 [4].

To integrate out the hyper-priors, the main idea in [4] is to
use importance sampling to compute the following integral:

PIP(s,m) =

∫
p(asm = 1|G,xm, π′)p(π′|G,xm)dπ′, (3)

where PIP(s,m) denotes the Posterior Inclusion Probability
for SNP s and region m. Carbonetto et al. [4] suggest to
replace it with the following importance sampling estimate

PIP(s,m) =

∑L
i=1 p(asm = 1|G,xm, π′(i))ζ(π′(i))∑L

i=1 ζ(π′(i))
(4)

where ζ(π′(i)) is the normalized importance weight for π′(i).
According to the importance sampling procedure,

ζ(π′) =
p(xm|G, π′)p(π′)

p̃(π′)
, (5)



2

SNP Gene
rs10106827 NECAB1,TMEM55A
rs10487075 C7orf62,STEAP2-AS1
rs10504488 EYA1,XKR9
rs10812555 C9orf11,LINC00032
rs111863968 ATG16L1,INPP5D
rs113814152 CHRNA2,PTK2B
rs114773661 CRBN,SUMF1
rs114956101 KCNK17,KCNK5
rs115815527 ASB5,SPCS3
rs11662059 ACAA2,LIPG
rs117119586 MTDH,TSPYL5
rs117281307 CTTNBP2,NAA38
rs117547283 POM121L1P,PRAME
rs117655211 ATP8B4,DTWD1
rs1178036 GNRH2,PTPRA
rs117984432 ANKRD11,SPG7
rs118091716 GRM3,SEMA3D
rs118192075 IMPACT,OSBPL1A
rs11875667 CETN1,COLEC12
rs12002176 C9orf170,DAPK1
rs12137076 GNG4,LYST
rs12198405 CD2AP,TNFRSF21

SNP Gene
rs12476069 COL6A3,MLPH
rs12535226 EGFR,LANCL2
rs12778247 ANXA8,ZNF488
rs12997264 ATG16L1,INPP5D
rs13040601 CBLN4,DOK5
rs13138250 FGFRL1,IDUA
rs13314819 BBX,CCDC54
rs145767144 MAF,WWOX
rs146373627 ECHDC3,USP6NL
rs146643250 DNAH5,TRIO
rs147030865 ATP8B4,SLC27A2
rs16849237 RHOU,TMEM78
rs17108960 CBX5,SMUG1
rs17781348 GAK,TMEM175
rs1806522 C3orf27,RPN1
rs1834554 MS4A4A,MS4A4E
rs1912718 ATOH1,GRID2
rs2048330 LINC00210,RRP15
rs2048330 LINC00210,RRP15
rs2136987 CCKAR,RBPJ
rs2701623 DTX1,RASAL1
rs79914380 LMO3,MGST1

SNP Gene
rs9393059 FOXQ1,HUS1B
rs2906657 PILRA,ZCWPW1
rs293168 NDUFA4,NXPH1
rs34380708 KIAA0317,LTBP2
rs3764648 ABCA7,HMHA1
rs3779632 CHRNA2,PTK2B
rs4133300 KCNJ3,NR4A2
rs4916928 .,FAM20C
rs56034708 CDC7,TGFBR3
rs57677986 ADAM10,FAM63B
rs59776273 CORIN,NFXL1
rs6020063 B4GALT5,SLC9A8
rs622354 OR10G7,VWA5A
rs62389386 CLK4,COL23A1
rs6571632 EGLN3,SPTSSA
rs6685242 CD46,CR1L
rs6934812 CD2AP,TNFRSF21
rs6949677 C7orf70,CYTH3
rs7027316 IFNE,MTAP
rs7068614 ECHDC3,USP6NL
rs7087150 CCNY,GJD4
rs7129687 EED,PICALM

SNP Gene
rs71327107 EP300,RBX1
rs74322721 DDHD1,FERMT2
rs75340942 HABP2,TCF7L2
rs7536931 CR1,CR1L
rs76222305 LRRTM1,SUCLG1
rs76448372 AMICA1,SCN2B
rs76822114 GC,SLC4A4
rs76978231 CSMD1,MCPH1
rs77271157 CLU,EPHX2
rs77287774 ZEB1-AS1,ZNF438
rs7812465 PLEKHF2,TP53INP1
rs78180796 PTPRM,RAB12
rs79079416 CSNK1G1,KIAA0101
rs792806 CA10,KIF2B
rs8030340 RSL24D1,UNC13C
rs8707 MAP3K12,PCBP2
rs2824734 LINC00320,TMPRSS15
rs28592859 HLA-DQA1,HLA-DQB1
ε3/ε4 APOE

TABLE II: Detected SNPs and the corresponding genes.
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Fig. 1: Prior probability density for different hyper-parameters: (a) Density of α for prior distribution of Beta(1.02, 1). The
prior assigns almost uniform weight to all values. (b) log of PV E density as a function of σω (x-axis) and σ0 (y-axis). PVE
functions as a prior for σω given a value of σ0. (c) log of the density of σ0.

where the numerator is proportional to p(π′|xm,G) and the
denominator is the proposal distribution, a uniform distribution
in our experiments. Since the marginal likelihood p(xm|G, π′)
cannot be computed directly, it is approximated by the highest
lower bound:

log p(xm|G, π′) ≥ F (π′; ς,ν, τ ). (6)

To approximate the p(xm|G), we can apply the following
procedure:

p(xm|G)=

∫
p(xm, π

′|G)dp(π′|G) = Eπ′|G [p(xm, π
′|G)]

≥ Eπ′|G

[
eF (π′;ς,ν,τ )

]
≥ exp

[
Eπ′|G [F (π′; ς,ν, τ )]

]
, (7)

where the last line in Eq. (7) follows from the convexity of
exponential function.

Similar to Eq. (4), the idea is to replace the expectation with
the importance sampling approximation:

Eπ′|G [F (π′; ς,ν, τ )] ≈
∑L
i=1 F (π′; ς,ν, τ )ζ(π′(i))∑L

i=1 ζ(π′(i))
. (8)
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Algorithm 1: Variational Learning to Approximate Poste-
rior Relevance of Brain Regions
Parameters: (a) prior for the regions α , (b) number of

iterations: T
Data: (a) Diagnosis y, (b) Imaging Data X, (c)

Genotype G
Output: Parameters of the posterior distribution: θ

1 Approximate Bayes Factors (γ)
2 for m← 1 to M do
3 Set γm to an approximation of Eq. (1) (see

Algorithm 2)

4 for i← 1 to T do
5 Draw a set from the current estimate of the posterior

distribution: bt ∼ qθ̃t ;
6 Approximate the marginal conditional likelihood

p(y|bt;X, π) ;
7 Set ĝt = b̃t

(
log p(y|bt) + γTbt + |bt| logα

)
;

8 Set Ĉt = b̃t(b̃t)T ;
9 Set gt+1 = (1− w)gt + wg̃t ;

10 Set Ct+1 = (1− w)Ct + wC̃t ;
11 Solve Ct+1θ̃t+1 = gt+1 ;
12 if t > N/2 then
13 Set ḡ = ḡ + ĝt;
14 Set C̄ = C̄ + Ĉt;

15 return the solution of a linear system of equations
C̄θ = ḡ;

Algorithm 2: Variational Learning to Approximate
p(x|b = 1;G)

Data: (a) Imaging features for one region x, (b)
Genotype G

Parameters: Set of hyper-parameters, π′(1), · · · , π′(L)
1 Output
2 (a) Approximate marginal likelihood

γ̂ ≈ log p(x|b = 1;G) ;
3 (b) Variational estimate of posterior inclusion

probability τ̂s := Eq[as|x, b = 1;G], ∀1 ≤ s ≤ S ;
4 (c) Variational estimate of posterior variance

(ς̂ := Eq[ω|x, b = 1;G]) ;
5 (d) Variational estimate of posterior variance

(ν̂ := Varq[ω|x, b = 1;G]) ;

6 for i← 1 to L do
7 Initialize (ςInit,νInit, τInit) randomly ;
8 (ς(i),ν(i), τ (i), Z(i))← Mean-Field(G,x, π′(i)) ;

9 Set (ςInit,νInit, τInit) to the parameters associated with
highest Z ;

10 for i← 1 to L do
11 (ς(i),ν(i), τ (i), Z(i))← Mean-Field(G,x, π′(i)) ;
12 Compute importance weight

ζ(i)← Z(i)p(π′(i))/p̃(π′(i)) ;

13 Normalize importance weights: ζ(i)← ζ(i)/(
∑
i ζ(i)) ;

14 Average Over Hyper-parameters
15 ν̂ ←

∑L
i=1 ζ(i)ν(i) ;

16 ς̂ ←
∑L
i=1 ζ(i)ς(i) ;

17 τ̂ ←
∑L
i=1 ζ(i)τ (i) ;

18 γ̂ ←
∑L
i=1 ζ(i) (logZ(i)) ;

19 return (ν̂, ς̂, τ̂ , γ̂) ;
20

21 Mean-Field Subroutine
Input: (a) Genotype (G) , (b) Response (y), (c)

Hyper-parameters (π′)
22 (ς,ν, τ )← (ςInit,νInit, τInit) ;
23 repeat
24 Choose s ∈ {1, · · · , S} ;
25 ς2s ← σ−20

(
(GTG)ss + 1/σ2

ω

)
;

26 νs ← ς2sσ
−2
0

(
(GTy)s −

∑
j 6=s(G

TG)jsτjνj

)
;

27 τs
1−τs ←

α
1−α ×

ςs
σ0σω

× exp( 1
2ν

2
s/ς

2
s )

28 until Convergence;
29 Set logZ to the approximate lower bound by Eq. (2) ;
30 return ς , ν, τ , Z ;


