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ABSTRACT

We present a new semi-supervised algorithm for dimensional-
ity reduction which exploits information of unlabeled data in
order to improve the accuracy of image-based disease classifi-
cation based on medical images. We perform dimensionality
reduction by adopting the formalism of constrainedmatrix de-
composition of [1] to semi-supervised learning. In addition,
we add a new regularization term to the objective function to
better captur the affinity between labeled and unlabeled data.
We apply our method to a data set consisting of medical scans
of subjects classified as Normal Control (CN) and Alzheimer
(AD). The unlabeled data are scans of subjects diagnosedwith
Mild Cognitive Impairment (MCI), which are at high risk to
develop AD in the future. We measure the accuracy of our
algorithm in classifying scans as AD and NC. In addition, we
use the classifier to predict which subjects with MCI will con-
verge to AD and compare those results to the diagnosis given
at later follow ups. The experiments highlight that unlabeled
data greatly improves the accuracy of our classifier.

Index Terms— Semi-supervised Learning, Basis Learn-
ing, Matrix factorization, Optimization, Alzheimer’s disease,
Mild Cognitive Impairment (MCI)

1. INTRODUCTION

The medical imaging community frequently relies on voxel-
wise image analysis to define areas of difference between
groups [2] or to extract features for classification. However,
this approach is not well suited for identify complex popula-
tion differences, because it does not take into account the mul-
tivariate relationships in data [1, 3]. Moreover, regions show-
ing significant group difference are not necessarily discrimi-
native for classifying individuals. In order to overcome these
limitations, high-dimensional pattern classification methods
have been proposed in the recent literatures [4, 5]. A fun-
damental limitation in these methods with respect to medical
imaging is their need for large training sets of labeled data.
One way to address this issue is to train the methods using

† Data used in the preparation of this article were obtained
from the Alzheimer Disease Neuroimaging Initiative (ADNI) database
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unlabeled data, which may exist in large quantities. However,
it is not clear how to exploit unlabeled data for dimensional-
ity reduction. We will explore these topics in the subsequent
sections.

Presence of unlabeled data in the learning process, also
referred to as semi-supervised learning, can have interesting
applications in medical imaging. For example, subjects may
deviate from the normal population and may be diagnosed
with a certain disease in future follow-up scans; class labels
of such subjects are not very well-defined. This is the case for
subjects diagnosed as Mild Cognitive Impairment (MCI) who
show some impairment in their cognitive scores and have high
risk to develop Alzheimer’s disease (AD) in near future. One
may be interested to predict future follow-up labels (converg-
ing to AD or not) of the MCI subjects by considering them as
unlabeled data. Considering MCI subjects as unlabeled data
allows an algorithm to locate unlabeled subjects in the spec-
trum of normal vs. abnormal.

Our proposed method is combination of two techniques:
the first technique proposed in [1] reduces the dimensional-
ity in a discriminative way while preserving the semantics of
images; hence it is clinically interpretable and produce good
classification accuracy. The second technique incorporates in-
formation provided by unlabeled data. It computes pair-wise
similarity of subjects while considering intrinsic geometry of
data distribution [6]. Pair-wise similarity between subjects
encodes relationship between labeled and unlabeled data and
it is shown to improve classification accuracy in presence of
unlabeled data [7]. Finally, the method is cast as a constrained
optimization problem similar to [1] but the optimization cost
function and its constraints as well as our optimizer are sig-
nificantly different.

Section 2 briefly describes our general framework that we
expand upon. Section 3 focuses on the added regularization
term that makes use of the information latent in the unlabeled
data. Section 4 presents a solution to the resulting optimiza-
tion problem. The results of applying our method to a subset
of ADNI data set are discussed in Section 5. Finally in Sec-
tion 6, we conclude with a discussion of the method.



2. GENERAL FRAMEWORK

Dimensionality reduction is typically applied to achieve a
generalizable classification rate when number of samples is
less than dimensionality of features. We propose to use reg-
ularized matrix factorization formalism for dimensionality
reduction. This framework allows to keep the semantics of
images; hence it produces interpretable results. The idea is
similar to [1] but formulation and its extensions (Section 3)
and other details are significantly different.

In this section, we lay out the general framework. Reg-
ularized matrix factorization decomposes a matrix into two
or more matrices such that the decomposition describes the
matrix as accurate as possible. Such decomposition could be
subjected to some constraints or priors. Let assume columns
ofX = [x1 · · ·xi · · ·xN ] represent observations (i.e. sample
images that are vectorized), and B ∈ RD×r and C ∈ Rr×N

decompose the matrix such that X ≈ BC. r is number of
basis vectors which is a parameter of the algorithm and D is
number of voxels of images andN is number of samples. The
columns of matrixB (called bk) can then be viewed as basis
vectors and the i’th column of C (called ci) contains corre-
sponding loading coefficients or weights of the basis vectors
for the i’th observation. The columns bk ∈ B and ci ∈ C
are subjected to some constraints, which we denote with the
feasibility sets B and C. We use variable yi ∈ {−1, 0, 1} to
denote labels of the subjects. Healthy subjects are denoted by
1 and abnormal ones by −1; 0 is used simply for unlabeled
subject indicating that labels are not decided for them.

In order to define the feasible sets (B), we need to elabo-
rate the requirements that our algorithm should satisfy: 1) The
basis vectors must be anatomically meaningful: this means
that a constructed basis vector should correspond to contigu-
ous anatomical regions preferably in areas which are biologi-
cally related to a pathology of interest. In other words, the ba-
sis vectors should not resemble spread disjoint voxels. Spar-
sity of the basis vectors, i.e. a relatively small number of
voxels with non-zeros values, encourages it to be more spa-
tially localized. 2) The basis must be discriminative: we are
interested in finding features, i.e. projections onto the basis
vectors, that construct spatial patterns that best differentiate
groups. 3) The decomposition (BC) should be a good repre-
sentative of data without compromising the previous proper-
ties.

In this paper, we assume that images are non-negative
hence it is reasonable to impose non-negativity on B and C.
Thus, our proposedmethod can be viewed as a variant of non-
negative matrix factorization (NMF). NMF [8],[9] is an addi-
tive model that is known to decompose images into mean-
ingful parts that are shared across subjects; this property is
favorable for our application. Such part-based decomposition
property encourages basis vectors to be similar to anatomi-
cally meaningful parts of images (i.e.Hippocampus, Caudate,
etc. for brain images). We also assume that certain structures

(e.g. Hippocampus) of an anatomy of interest (e.g. brain) are
affected by the abnormality (e.g. shrinkage of Hippocampus
Alzheimer’s disease); this property can be viewed as a spar-
sity constraint on the basis vectors which also help the basis
vectors to be more interpretable. We encode these proper-
ties via non-negativity on the coefficients and combination of
non-negativity and !1 and !∞ norms on the basis vectors. The
!1-norm encourages the sparsity property and combination of
!∞ and non-negativity promotes part-based decomposition:

C := {c ∈ R
r : c ≥ 0}

B := {b ∈ R
D : b ≥ 0,‖b‖∞ ≤ 1,‖b‖1 ≤ λ3} (1)

where ratio of λ3/D encodes ratio of sparsity of the basis
vectors.

In order to find optimalB andC, we define the following
constrained optimization problem:

min
B,C,w∈Rr

D(X;BC) +
∑
i∈L

!(yi; 〈B
T
xi,w〉) + ‖w‖2

subject to: bk ∈ B, ci ∈ C (2)

The cost function of the optimization problem consists of two
terms: 1) Generative term (D(·; ·)) that encourages the de-
composition,BC, to be close to the data matrix (X); both la-
beled and unlabeled data contribute to this term. 2) Discrimi-
native term (!(yi; f(xi,B,w))) is a loss function that encour-
ages a classifier f(·) to produce class labels that are consistent
with available labels (y). The classifier parametrized by w,
projects each image (xi) on the basis vectors to produce new
features (vi = BTxi) and produces a labels. In this paper,
we use a linear classifier, hence f(xi,B,w) = 〈BTxi,w〉.
Only labeled data contribute to the discriminative term. Vari-
ous choice are possible forD(·; ·) and !(·; ·). In this paper, we
setD(X;BC) = λ1‖X−BC‖2F where λ1 is a constant. For
the loss function, we choose a hinge squared loss function:
!(y, ỹ) = (max{0, 1 − yỹ})2 which is a common choice in
Support Vector Machine literature. Summing over L for the
loss function simply indicates that the labeled subjects partic-
ipate in this term.

3. SEMI-SUPERVISED REGULARIZER

In this section, we extend the method for semi-supervised
learning by extending the simple !2 regularization term of w
in (Eqn.(2)) to a more general Regularization term (R(·; ·))
involving both basis matrix (B) andw vector:

min
bk∈B,ci∈C,w∈Rr

D(X;BC) +
∑
i∈L

!(yi; 〈B
Txi,w〉) +R(B,w)

We note that our model only regularizesB andw but not
C. Our proposed regularization term is inspired by Laplacian-
SVM (lapSVM) [7], and particularly the linear version of
[10]. In lapSVM, samples (labeled and unlabeled) are con-
sidered as nodes of a graph. Every two nodes are connected



via an edge and there is a weight associated to the edge deter-
mining how similar the two nodes (samples) are. Properties
of this graph is used to define a regularization for lapSVM
[7]. Similar to lapSVM, our proposed regularization (Eqn.(3))
consists of two terms: the first term, which is a simple !2-
norm, controls the complexity of the classifier in the ambient
space (here Rr) and the second term is an appropriate penalty
term reflecting the intrinsic structure of distribution of sam-
ple. The second term encourages the classifier to produce
class label for an image that is similar to the labels of its most
similar neighbors on the graph:

R(B,w) = γA‖w‖22 + γI‖w‖2Q(B)

Q(B) = B
T
XLX

T
B (3)

where Q is a r × r matrix and ‖z‖2Q = zTQz; γA and γI
balance relative weight between two terms and L is a N ×N
precomputed graph Laplacian, given labeled and unlabeled
data. We will shortly explain how to build a graph of labeled
and unlabeled images and how to compute the graph Lapla-
cian.

Inspired by [6], we compute the Laplacian matrix on the
complete, weighted, and undirected graph with each image in
the dataset being represented by one node. First, we define the
distance between two images Ii : ΩI → R and Ij : ΩJ → R
as the weighted sum of residual and harmonic energy after
registration:

d(Ii, Ij) = κ1

∫
||Ii(x+ h(x))− Ij(x)||

2
2dx+

∫
||!h(x)||2dx

where h : ΩI → R3 is the displacement field such that if x ∈
ΩI then x + h(x) ∈ ΩJ and κ1 is the registration parameter
[6]. The images are registered by the Diffemorphic Demons
[11] with coarse resolution due to its fast speed. Then, the
non-negative weights Kij between two images are assigned
by exponential of a negative distance: Kij = e−d(Ii,Ij)/σ . A
weights matrixK is obtained by collecting the edge weights
Kij for every image pair and a diagonal matrix T contains
the row sums for each vertex tii = ΣjKij . The Laplacian L
[12] is then constructed by L = T−K.

The Laplacian L encodes information relating to all pair-
wise relations between the images. In words, the second
term in Eqn. 3 promotes smoothness of class labels on
the graph. By multiplying the vector w on the left and
right of Q(B), (Eqn.(3)) can be written as wTQ(B)w =∑

ij Kij(wBxi −wBxj)2.

4. OPTIMIZATION

Having all terms the cost function and the constraints, we can
form the optimization problem as follows:

min
B,C,w

λ1‖X−BC‖2F +
∑

i∈L

!(yi; 〈B
Txi,w〉)

+ γA‖w‖22 + γI‖w‖2Q(B)

subject to: bk ≥ 0, ‖bk‖∞ ≤ 1, ‖bk‖1 ≤ λ3

C ≥ 0

Fig. 1: Two examples of learned basis vectors shown in differ-
ent sagittal cuts. The red color indicates one and blue (trans-
parent) indicates zero.

The optimization problem is not jointly convex with re-
spect to all blocks of variables (B,C,w). However, fixing
each pairs of blocks, the optimization is convex with respect
the other block. Our proposed algorithm uses this property
and applies a block-wise optimization scheme, i.e. fixing each
pairs of blocks (e.g. fixingB,C) and optimizing with respect
to the other (e.g. w) and iterate till some convergence crite-
rion is satisfied. This scheme guarantees to decrease the cost
function in each iteration and, specifically for this problem, is
guarantees to converge to a local minimum. Block-wise opti-
mization with respect toC andw are not challenging but it is
challenging with respect to B because it is very high dimen-
sional. Detail discussion of our proposed efficient method
to circumvent this issue is beyond the scope of this paper;
briefly, we use Spectral Projected Gradient (SPG) [13] with
an efficient projection method on the feasible set (B).

5. EXPERIMENTS

To evaluate the proposed method, we applied our method
on a subset of Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. The dataset we used consists of structural
MRI images of 54 Alzheimer’s (AD), 238 Mild Cognitive



Impairment (MCI), and 63 Normal Control (CN) subjects
at the baseline time point. Among 238 MCI subjects, 68
patients converted to AD in a few follow-up months (cMCI)
and 170 subjects have not converted yet or may not ever con-
vert (ncMCI). The preprocessing pipeline (bias correction,
skull stripping, tissue characterization, and spatial normaliza-
tion) is designed according to what is suggested in [1]; and
it computes so-called RAVENS maps [14] that quantifies the
density of the gray matter tissue. The observation matrix X
is obtained by collecting the RAVENS map for each subject.

Then, we conducted the semi-supervised basis learning
method on X. For computational efficiency, the basis vec-
tors B were learned only from 79 MCI subjects (unlabeled
data), and 20 AD / 20 CN subjects (labeled data). The la-
beled subjects were divided into five folds for cross valida-
tion (4/5 for training and 1/5 for testing) and the 79 MCI
subjects were shared as unlabeled data across folds. In order
to investigate the affect of number of labeled data, we per-
formed four basis learning by increasing number of revealed
labels from 4 to 32; each fold has 4/5 × (20 + 20) = 32
AD/CN subjects and we revealed labels of AD/CN subjects
as: {(2, 2), (4, 4), (8, 8), (16, 16)}. Figure 1 shows two ex-
amples of learned basis vectors in different sagittal cuts. Hip-
pocampus, Cingulate and temporal lobe regions, which are
associated with memory loss [15], are precisely highlighted
in the basis.

After basis learning, features are extracted by projecting
all images on the learned basis vectors. These features were
fed into a supervised classifier (SC: Simple Logistic) and a
semi-supervised classifier (SSC: linear Laplacian SVM [10])
to produces labels. To have a reference point for comparison,
we also learned the basis without unlabeled data (supervised
basis learning). Figure 2a plots accuracy rates of AD/CN with
respect to number labeled data in different settings. Accu-
racy rates were computed on the left out labeled data and the
rest of the labeled data that was not introduced during basis
learning or classifier learning; in other words, the 2/3 of the
data not contributed in training was used for validation. For
brevity, SF in Figure 2a indicates Supervised Features, i.e. us-
ing only labeled data to learn the basis vectors, and SSF(lap)
denotes Semi-Supervised Features, i.e. using labeled and un-
labeled data to learn the basis vectors while the Laplacian
regularization in (Eqn.(3)) is used. Figure2 shows different
scenarios for classification: supervised features fed into a su-
pervised classifier ( SF + SC) and a semi-supervised classifier
(SF + SSC) and compares it with semi-supervised features
fed into a supervised classifier (SSF(lap) + SC) and a semi-
supervised classifier (SSF(lap) + SSC). The figure shows that
semi-supervised basis learning in presence of unlabeled data
helps improving accuracy of detecting AD/CN: compare the
blue line with the green line and the pink line with the red line.
It also shows that if the semi-supervised classifier (SSC) is
used instead of a fully supervised classifier (SC), we achieve
the maximum performance. It also shows that presence of

unlabeled data helps improving classification rate with fewer
labeled data as it saturates faster than the supervised cases.

Figure 2b shows similar results for MCI subjects. How-
ever, real labeling for ncMCI subjects are vague because they
may or may not convert to AD in the future unlike cMCI who
have already converted in a few follow up scans. In order
to evaluate performance of the algorithm on this dataset, we
reported the Area Under Curve (AUC) instead of accuracy.
This figure also shows that semi-supervised basis learning im-
proves the AUC and we can see even higher boost by using
semi-supervised classifier in comparison to a fully supervised
classifier.

Figure2 also includes experiments in which the Laplacian
regularization is set to zero (i.e. γI = 0). Notice that the
algorithm is still a semi-supervised learning because both la-
beled and unlabeled contribute in the generative term (D(·; ·))
but only the labeled data contributes the discriminative term
(!(·; ·)). This experiment is denoted by SSF comparing to
SSF(lap) where the Laplacian term is in use. The purpose
of this experiment is to investigate which term (the genera-
tive term or the Laplacian term) has more impact in the semi-
supervised learning. In Figure2a, there is no significant dif-
ference between SSF and SSF(lap)meaning that most of gain
due to presence of unlabeled data is obtained by the generative
term rather than Laplacian regularization (Eqn.(3)). However
Figure2b shows that adding the Laplacian regularization im-
proves AUC slightly.

It is worth mentioning that the proposed algorithm has
couple of parameters to tune (λ’s and γ’s). Due to space limi-
tation, sensitivity analysis with respect to these parameters is
not presented in this paper but fully investigated in a longer
version of this paper which is currently under review for jour-
nal publication. We refer interested readers to a draft version
of the journal paper that soon will be accessible through the
first author homepage.

6. CONCLUSION

We presented a framework to reduce the dimension of image
features in presence of unlabeled data. Constrainedmatrix de-
composition problemwas adapted for generative and discrim-
inative basis learning and extended to semi-supervised for-
mulation. Semi-supervised dimensionality reduction method
outperforms supervised dimensionality reduction for both
classification tasks considered in this paper, both in terms of
classifier accuracy and area under curves (AUC). It seems
that the generative term has more impact in semi-supervised
learning rather than the Laplacian regularization in (Eqn.(3));
nevertheless further investigation is required to find the right
balance between these two terms to exploit unlabeled data
further. Future work will involve evaluating semi-supervised
dimensionality reduction method for other medical image
datasets and other scenarios.
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Fig. 2: For different number of labeled samples, this graph compares different measures (AUC and accuracy) for Super-
vised Features (SF) and Semi-Supervised Features fed into a supervised classifier (SC) and a semi-supervised classifier (SSC).
SSF(lap) indicates γI > 0 while SSF denotes γI = 0: (a) represents AD-CN accuracy; (b) indicates Area Under Curve (AUC)
for the MCI subjects (converters vs non-converters).
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[13] Ernesto G. Birgin, José Mario Martı́nez, and Marcos Raydan,

“Nonmonotone spectral projected gradient methods on convex
sets,” Philadelphia, PA, USA, 2000, vol. 10, pp. 1196–1211,
Society for Industrial and Applied Mathematics.

[14] C. Davatzikos, A. Genc, D. Xu, and S. M. Resnick, “Voxel-
based morphometry using the ravens maps: methods and val-
idation using simulated longitudinal atrophy.,” Neuroimage,
vol. 14, no. 6, pp. 1361–1369, Dec 2001.

[15] Gael Chetelat, Beatrice Desgranges, Vincent De La Sayette,
Fausto Viader, Francis Eustache, and Jean-Claude Baron,
“Mapping gray matter loss with voxel-based morphometry in
mild cognitive impairment.,” Neuroreport, vol. 13, no. 15, pp.
1939–1943, Oct 2002.


