Message Passing and

 Junction Tree Algorithms

 Junction Tree Algorithms}

Kayhan Batmanghelich

Review

$$
\begin{aligned}
& P(C, D, I, G, S, L, J, H) \\
& \quad=P(C) P(D \mid C) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& p(C, D, I, G, S, L, J, H) \\
& =\psi_{C}(C) \psi_{D}(D, C) \psi_{I}(I) \psi_{G}(G, I, D) \psi_{S}(S, I) \psi_{L}(L, G) \psi_{J}(J, L, S) \psi_{H}(H, G, J)
\end{aligned}
$$

Review

$$
(C, D, I, H, G, S, L)
$$

$\{C, D\},\{D, I, G\},\{G, L, S, J\},\{G, J, H\},\{G, I, S\}$

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Review

Message from one C1 to C2: Multiply all incoming messages with the local factor and sum over variables that are not shared

Message passing (Belief Propagation) on
singly connected graph

Remember this: Factor Graph?

- A factor graph is a graphical model representation that unifies directed and undirected models
- It is an undirected bipartite graph with two kinds of nodes.
- Round nodes represent variables,
- Square nodes represent factors and there is an edge from each variable to every factor that mentions it.
- We are going to study messages passing between nodes.

How General Are Factor Graphs?

- Factor graphs can be used to describe
- Markov Random Fields (undirected graphical models)
- i.e., log-linear models over a tuple of variables
- Conditional Random Fields
- Bayesian Networks (directed graphical models)
- Inference treats all of these interchangeably.
- Convert your model to a factor graph first.
- Pearl (1988) gave key strategies for exact inference:
- Belief propagation, for inference on acyclic graphs
- Junction tree algorithm, for making any graph acyclic (by merging variables and factors: blows up the runtime)

Factor Graph Notation

- Variables:

$$
\mathcal{X}=\left\{X_{1}, \ldots, X_{i}, \ldots, X_{n}\right\}
$$

- Factors:

$$
\begin{gathered}
\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \ldots \\
\text { where } \alpha, \beta, \gamma, \ldots \subseteq\{1, \ldots n\} \\
\text { Joint Distribution } \\
p(\boldsymbol{x})=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)
\end{gathered}
$$

time

Factors are Tensors

- Factors:

$$
\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \ldots
$$

Sp
VP p

time

An Inference Example

Message Passing in Belief Propagation

Both of these messages judge the possible values of variable X. Their product $=$ belief at $X=$ product of all 3 messages to X.

Sum-Product Belief Propagation

Sum-Product Belief Propagation

Sum-Product Belief Propagation

Variable Message

$$
\mu_{i \rightarrow \alpha}\left(x_{i}\right)=\prod_{\alpha \in \mathcal{N}(i) \backslash \alpha} \mu_{\alpha \rightarrow i}\left(x_{i}\right)
$$

Sum-Product Belief Propagation

Factor Belief

$$
b_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)=\psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

Sum-Product Belief Propagation

$$
\begin{array}{c|c|c}
& v & n \\
\hline p & 3.2 & 6.4 \\
\hline d & 24 & 0 \\
\hline n & 0 & 0
\end{array}
$$

$$
b_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)=\psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

Sum-Product Belief Propagation

Factor Message

$$
\mu_{\alpha \rightarrow i}\left(x_{i}\right)=\sum_{\boldsymbol{x}_{\boldsymbol{\alpha}}: \boldsymbol{x}_{\boldsymbol{\alpha}}[i]=x_{i}} \psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{j \in \mathcal{N}(\alpha) \backslash i} \mu_{j \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

Sum-Prod t Belief Propagation

matrix-vector product (for a binary factor)

$$
\mu_{\alpha \rightarrow i}\left(x_{i}\right)=\sum_{\boldsymbol{x}_{\boldsymbol{\alpha}}: \boldsymbol{x}_{\boldsymbol{\alpha}}[i]=x_{i}} \psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{j \in \mathcal{N}(\alpha) \backslash i} \mu_{j \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

Summary of the Messages

Variable to Factor message

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

Factor to Variable message

$$
\mu_{f \rightarrow x}(x)=\max _{\mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

Marginal

$$
p(x) \propto \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x)
$$

Sum-Product Belief Propagation

Input: a factor graph with no cycles
Output: exact marginals for each variable and factor

Algorithm:

1. Initialize the messages to the uniform distribution.

$$
\mu_{i \rightarrow \alpha}\left(x_{i}\right)=1 \quad \mu_{\alpha \rightarrow i}\left(x_{i}\right)=1
$$

1. Choose a root node.
2. Send messages from the leaves to the root.

Send messages from the root to the leaves.

$$
\mu_{i \rightarrow \alpha}\left(x_{i}\right)=\prod_{\alpha \in \mathcal{N}(i) \backslash \alpha} \mu_{\alpha \rightarrow i}\left(x_{i}\right) \quad \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\sum_{x_{\alpha}: x_{\alpha}[i]=x_{i}} \psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{j \in \mathcal{N}(\alpha) \backslash i} \mu_{j \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

1. Compute the beliefs (unnormalized marginals).

$$
b_{i}\left(x_{i}\right)=\prod_{\alpha \in \mathcal{N}(i)} \mu_{\alpha \rightarrow i}\left(x_{i}\right) \quad b_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)=\psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \prod_{i \in \mathcal{N}(\alpha)} \mu_{i \rightarrow \alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}[i]\right)
$$

2. Normalize beliefs and return the exact marginals.

$$
p_{i}\left(x_{i}\right) \propto b_{i}\left(x_{i}\right) \quad p_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right) \propto b_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)
$$

Sum-Product Belief Propagation

Sum-Product Belief Propagation

(Acyclic) Belief Propagation

In a factor graph with no cycles:

1. Pick any node to serve as the root.
2. Send messages from the leaves to the root.
3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge only after it has received incoming messages along all its other edges.

(Acyclic) Belief Propagation

In a factor graph with no cycles:

1. Pick any node to serve as the root.
2. Send messages from the leaves to the root.
3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge only after it has received incoming messages along all its other edges.

A note on the implementation

To avoid numerical precision issue, use log message ($\lambda=\log \mu$):

Variable to Factor message

$$
\begin{aligned}
& \mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x) \\
& \lambda_{x \rightarrow f}(x)=\sum_{g \in\{\operatorname{ne}(x) \backslash f\}} \lambda_{g \rightarrow x}(x)
\end{aligned}
$$

Factor to Variable message

$$
\mu_{f \rightarrow x}(x)=\max _{\mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

$$
\lambda_{f \rightarrow x}(x)=\log \left(\sum_{\mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \exp \left(\sum_{y \in\{\operatorname{ne}(f) \backslash x\}} \lambda_{y \rightarrow f}(y)\right)\right)
$$

How about other queries? (MPA, Evidence)

Example

$$
\max _{\mathbf{x}} f(\mathbf{x})=\max _{x_{1}, x_{2}, x_{3}, x_{4}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{4}\right)=\max _{x_{1}, x_{2}, x_{3}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \max _{x_{4}} \phi\left(x_{3}, x_{4}\right)
$$

$$
\max _{x_{3}} \phi\left(x_{2}, x_{3}\right) \gamma_{4}\left(x_{3}\right)
$$

x_{3}

$$
\gamma_{3}\left(x_{2}\right)
$$

The Max Product Algorithm

Variable to Factor message

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

Maximal State

$$
x^{*}=\underset{x}{\operatorname{argmax}} \prod_{f \in \mathrm{ne}(x)} \mu_{f \rightarrow x}(x)
$$

Factor to Variable message

$$
\mu_{f \rightarrow x}(x)=\max _{\mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

Can I use BP in a multiply connected graph?

Loops the trouble makers

$p(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(a, d)$

$$
p(a, b, c)=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(a, d)}_{f_{5}(a, c)}
$$

- One needs to account for the fact that the structure of the graph changes.
- The junction tree algorithm deals with this by combining variables to make a new singly connected graph for which the graph structure remains singly connected under variable elimination.

Clique Graph

- Def (Clique Graph): A clique graph consists of a set of potentials, $\phi_{1}\left(\chi_{1}\right), \cdots, \phi_{n}\left(\chi_{n}\right)$ each defined on a set of variables χ_{1}. For neighboring cliques on the graph, defined on sets of variables χ_{1} and χ_{j}, the intersection $\chi_{s}=\chi_{i} \cap \chi_{j}$ is called the separator and has a corresponding potential $\phi_{s}\left(\chi_{s}\right)$. A clique graph represents the function

$$
\frac{\prod_{c} \phi_{c}\left(\mathcal{X}^{c}\right)}{\prod_{s} \phi_{s}\left(\mathcal{X}^{s}\right)}
$$

Example

$$
\phi\left(\mathcal{X}^{1}\right) \phi\left(\mathcal{X}^{2}\right) / \phi\left(\mathcal{X}^{1} \cap \mathcal{X}^{2}\right)
$$

Clique Graph

- Def (Clique Graph): A clique graph consists of a set of potentials, $\phi_{1}\left(\chi_{1}\right), \cdots, \phi_{n}\left(\chi_{n}\right)$ each defined on a set of variables χ_{1}. For neighboring cliques on the graph, defined on sets of variables χ_{1} and χ_{j}, the intersection $\chi_{s}=\chi_{i} \cap \chi_{j}$ is called the separator and has a corresponding potential $\phi_{s}\left(\chi_{s}\right)$. A clique graph represents the function

Don't confuse it with Factor Graph! Example

Example: probability density

$p(a, b, c, d)=\frac{\phi(a, b, c) \phi(b, c, d)}{Z}=\frac{p(a, b, c) p(b, c, d)}{p(c, b)}$

Junction Tree

- Idea: form a new representation of the graph in which variables are clustered together, resulting in a singly-connected graph in the cluster variables.
- Insight: distribution can be written as product of marginal distributions, divided by a product of the intersection of the marginal distributions.
- Not a remedy to the intractability.

Let's learn by an example....

Moralization

Let's learn by an example....

Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

Let's learn by an example....

Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

Let's learn by an example....

Coherence
Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

Let's learn by an example....

Coherence
Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

Let's learn by an example....

Coherence
Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

Let's learn by an example....

Let's pick an ordering for the variable elimination C, D, I, H, G, S, L

The rest is obvious

OK, what we got so far?

We started with

Moralized and Triangulated

Def: An undirected graph is triangulated if every loop of length 4 or more has a chord. An equivalent term is that the graph is decomposable or chordal. From this definition, one may show that an undirected graph is triangulated if and only if its clique graph has a junction tree.

Let's build the Junction Tree

C, D, I, H, G, S, L

Pass the messages on the JT

The ordering

$$
C, D, I, H, G, S, L
$$

The message passing protocol

Message passing protocol
Cluster B is allowed to send a message to a neighbor C only after it has received messages from all neighbors except C.
def COLLECT(C):
for B in children (C):
COLLECT(B)
send message to C
def DISTRIBUTE(C):
for B in children (C):
send message to B
DISTRIBUTE(C)

Message from Clique to another
(The Shafer-Shenoy Algorithm)

Formal Algorithm

- Moralisation: Marry the parents (only for directed distributions).
- Triangulation: Ensure that every loop of length 4 or more has a chord.
- Junction Tree: Form a junction tree from cliques of the triangulated graph, removing any unnecessary links in a loop on the cluster graph. Algorithmically, this can be achieved by finding a tree with maximal spanning weight with weight given by the number of variables in the separator between cliques. Alternatively, given a clique elimination order (with the lowest cliques eliminated first), one may connect each clique to the single neighboring clique.
- Potential Assignment: Assign potentials to junction tree cliques and set the separator potentials to unity.
- Message Propagation

Some Facts about BP

- $B P$ is exact on trees.
- If BP converges it has reached a local minimum of an objective function
- (the Bethe free energy Yedidia et.al ' 00 , Heskes '02) \rightarrow often good approximation
- If it converges, convergence is fast near the fixed point.
- Many exciting applications:
- error correcting decoding (MacKay, Yedidia, McEliece, Frey)
- vision (Freeman, Weiss)
- bioinformatics (Weiss)
- constraint satisfaction problems (Dechter)
- game theory (Kearns)

Summary of the Network Zoo

UGM and DGM

- Use to represent family of probability distributions
- Clear definition of arrows and circles

Factor Graph

- A way to present factorization for both UGM and DGM
- It is bipartite graph
- More like a data structure
- Not to read the independencies

Clique graph or Junction Tree

- A data structure used for exact inference and message passing
- Nodes are cluster of variables
- Not to read the independencies

