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Great Ideas in ML: Message Passing
Each soldier recetves reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of free




Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

S wouldn't work correctly A
with a 'loopy' (cyclic) graph
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Review

Message from one C1 to C2:
Multiply all incoming messages
with the local factor and sum over
variables that are not shared

m,(a,c,d)
= Zp(e | C,d)mg (e)mf (aae)

© Eric Xing @ CMU, 2005-2015



Message passing (Belief Propagation)
on
singly connected graph



Remember this: Factor Graph?
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variables

* A factor graph is a graphical model representation that unifies directed and
undirected models

* It is an undirected bipartite graph with two kinds of nodes.

* Round nodes represent variables,
* Square nodes represent factors

and there is an edge from each variable to every factor that mentions it.
* We are going to study messages passing between nodes.



How General Are Factor Graphs?

* Factor graphs can be used to describe

— Markov Random Fields (undirected graphical models)
* i.e., log-linear models over a tuple of variables

— Conditional Random Fields
— Bayesian Networks (directed graphical models)

* Inference treats all of these interchangeably.

— Convert your model to a factor graph first.
— Pearl (1988) gave key strategies for exact inference:

* Belief propagation, for inference on acyclic graphs

* Junction tree algorithm, for making any graph acyclic
(by merging variables and factors: blows up the runtime)



Factor Graph Notation

e Variables:
X = {)(1,...,}(5,...,)Cn}

* Factors:

¢a»¢5»¢w I

where a. 3 Yo« - Q {L cee '7'2}

Joint Distribution

p(@) = [ vala)




Factors are Tensors
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An Inference Example

p(a,b) = f (a,b) Zf2 b,c,d) f3(c) f5(d) Zf1 d,e) p(a|b)p(ble,d)p(c)p(d)p(e|d)
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Message Passing in Belief Propagation
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My other factors
think I’m a noun
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But my other
variables and |
think you’re a verb

Both of these messages judge the possible values of variable X.
Their product = belief at X = product of all 3 messages to X.
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Beliefs

Messages

Sum-Product Belief Propagation

Variables Factors
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Sum-Product Belief Propagation

Variable Belief
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Sum-Product Belief Propagation

Variable Message




Sum-Product Belief Propagation

Factor Belief
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Sum-Product Belief Propagation

Factor Belief




Sum-Product Belief Propagation

Factor Message
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Sum-Prodr<t Belief Propagation

Factor Message\“;..\{;-\.\..\_jf o % 3

AN 2 & .
v ¥ matrix-vector product

(for a binary factor)




Summary of the Messages

Variable to Factor message Factor to Variable message
Pos f (T) = 1] g () Pz () = 1{’1?.\"'0](/1’;) H Py—f (y)
g€{ne(z)\f} A ye{ne(f)\z}

Marginal

p(x) H ffsa (2)

feEne(x)

f2. 24



Sum-Product Belief Propagation

Input: a factor graph with no cycles
Output: exact marginals for each variable and factor

Algorithm:

1. Initialize the messages to the uniform distribution.
Lisa(xi) =1 pasi(zi) =1

1. Choose aroot node.

2. Send messages from the leaves to the root.
Send messages from the root to the leaves.

/M—)oc(xz) - H :uoz—m(xz) ,uoz—m(xz) - Z /lvboz (wa) H Mj—)a(wa [Z])
aeN (i)\a T T lt]=x; JEN (a)\1
1. Compute the beliefs (unnormalized marginals).
bz(xz) = H ,uoz—wj(xi) ba(a:a '¢a wa H Mz—)a Lo Z]
aEN (i) iEN ()
2. Normalize beliefs and return the exact marginals.

pi(5) o< bi(2;) || Pa(Ta) X bo(Ta)




Beliefs

Sum-Product Belief Propagation

Variables Factors




Messages

Sum-Product Belief Propagation

Variables Factors

aeN(i)\« To T li]=x; JEN (a)\i




(Acyclic) Belief Propagation

In a factor graph with no cycles:

1. Pick any node to serve as the root.

2. Send messages from the leaves to the root.
3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge
only after it has received incoming messages along all its other edges.

flies like an arrow

time



(Acyclic) Belief Propagation

In a factor graph with no cycles:

1. Pick any node to serve as the root.

2. Send messages from the leaves to the root.
3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge
only after it has received incoming messages along all its other edges.

time flies like an arrow



A note on the implementation

To avoid numerical precision issue, use log message (A = log 11):

Variable to Factor message

. T) = Loy (T |
ooy @ = ttge @) ppoe (@) = maxor(Xy) T[] s @)
g€{ne(z)\f} Xe\z
yE{ne(f)\z}

Factor to Variable message

/\f_“' (.‘I?) = l()g (Z (f)f(/Yf)(3XI) ( Z /\y—>f (l’/)))
}

Xf\z ye{ne(f)\x
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How about other queries?
(MPA, Evidence)




Example

max f(x) = max_ $(z1,22)$(@2 23)$(53, %) = max ¢(z1, z2)d(z2, vs) max (zs, z4)
b'e r1,r2,r3,r4 5131»132,333; ! L4 )
7-1?;:;) I

TI;%;X P(x2, 1‘3)’74(3?3)5

v3(x2)

‘maxmax ¢(x1, z2)y3(z2)
1 )

N—— e —————
v2(x1)
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The Max Product Algorithm

Variable to Factor message

pz—sf (T) = H fg—z (T)
ge{ne(z)\f}
i <
3 ()
pesr (3) 1

Maximal State

x" = argmax I I Hfsa (T)
* fEne(x)

Factor to Variable message

U e () = maxos(Xy)
Xr\z

11

yE{ne(f)\z}

n/;

ty—s £ (y)
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Can | use BP in a multiply connected graph?



Loops the trouble makers

fi 1
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pla,b,c,d) = fi(a,b) fo(b,c) f3(c,d) fi(a,d) p(a,b,c) = fi(a,b) f2(b,c) z{: f3 (e, d) fa(a,d)

N 7
"

f5(a,c)

* One needs to account for the fact that the structure of the graph changes.

 The junction tree algorithm deals with this by combining variables to make a new singly
connected graph for which the graph structure remains singly connected under variable
elimination.
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Cligue Graph

* Def (Clique Graph): A clique graph consists of a set of potentials,
b1(x1), -+, d,(x,,) each defined on a set of variables y,. For neighboring
cliques on the graph, defined on sets of variables y; and y;, the intersection

Xs = Xi N xjis called the separator and has a corresponding potential ¢¢(xs).

A cligue graph represents the function [1. be(X)
Hs QDS(‘/YS)
~— Example ~
x! — vl xy2 — X“) | @(Xl)Q(XZ)/Q(XlﬂXZ)

- /
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Cligue Graph

Don’t confuse it with Factor Graph!



Example: probability density
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Junction Tree

* ldea: form a new representation of the graph in which variables are

clustered together, resulting in a singly-connected graph in the cluster
variables.

* Insight: distribution can be written as product of marginal

distributions, divided by a product of the intersection of the marginal
distributions.

* Not a remedy to the intractability.



Let’s learn by an example....

Coherence

Coherence

Moralization
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Let’s learn by an example....

-Eoherence Let’s pick an ordering for the variable elimination

C, DI, H G, S, L
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Let’s learn by an example....

Coherence
Difficulty ‘ Intelligence
Grades

7
'
7
'
7

Happy

Jol;i

Let’s pick an ordering for the variable elimination
C,D ILH G, S, L

The rest is obvious



OK, what we got so far?

Coherence Coherence

We started with Moralized and Triangulated



Def: An undirected graph is triangulated if every loop
of length 4 or more has a chord. An equivalent term is
that the graph is decomposable or chordal. From this
definition, one may show that an undirected graph is
triangulated if and only if its clique graph has a
junction tree.

=d



Let’s build the Junction Tree

The ordering
C,D ILH G, S, L
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Pass the messages on the JT

mS(J, L) =
> ma(J, S, L)P(J|L, S)
S

mI(G, S) =
> mp(G,I)P(GII)P(S|I)
1

my(G,J) =Y P(H|G,J) -
" ; can you figure out the

The ordering directionality?

C, DI, H G, S, L
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The message passing protocol

Cluster B is allowed to send a message to a neighbor C only after

it has received messages from all neighbors except C.

COLLECT(C):

B children (C):
COLLECT(B)

send message to C

COLLECT
DISTRIBUTE

DISTRIBUTE(C):

B children (C):
send message to B
DISTRIBUTE(C)
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Message from Clique to another
(The Shafer-Shenoy Algorithm)

pssc(u) = Y wswUo) || pass



Formal Algorithm

* Moralisation: Marry the parents (only for directed distributions).
* Triangulation: Ensure that every loop of length 4 or more has a chord.

* Junction Tree: Form a junction tree from cliques of the triangulated graph, removing any
unnecessary links in a loop on the cluster graph. Algorithmically, this can be achieved by
finding a tree with maximal spanning weight with weight given by the number of
variables in the separator between cliques. Alternatively, given a clique elimination
order (with the lowest cliques eliminated first), one may connect each clique to the
single neighboring clique.

* Potential Assignment: Assign potentials to junction tree cliques and set the separator
potentials to unity.

* Message Propagation



Some Facts about BP

e BP is exact on trees.

e |f BP converges it has reached a local minimum of an objective function

* (the Bethe free energy Yedidia et.al ‘00, Heskes ‘02)-> often good approximation

e [fit converges, convergence is fast near the fixed point.
e Many exciting applications:
- error correcting decoding (MacKay, Yedidia, McEliece, Frey)
- vision (Freeman, Weiss)
- bioinformatics (Weiss)
- constraint satisfaction problems (Dechter)

- game theory (Kearns)



Summary of the Network Zoo

UGM and DGM

Use to represent family of probability
distributions
Clear definition of arrows and circles

4 N\ N
51 f(zy,x2)
s f@n3) || oo
P40~ (2, 24)

. AN J

Factor Graph Clique graph or Junction Tree

A way to present factorization for
both UGM and DGM

It is bipartite graph

More like a data structure

Not to read the independencies

A data structure used for exact
inference and message passing
Nodes are cluster of variables
Not to read the independencies
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