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e Class webpage:
e https://kayhan.dbmi.pitt.edu/node/38

10-708 (CMU) Probabilistic Graphical Models

Probabilistic Graphical Models

Overview

Many of the problems in artificial intelligence, statistics, computer systems, computer vision, natural language processing, and computational biology, among
many other fields, can be viewed as the search for a coherent global conclusion from local information. The probabilistic graphical model's framework provides a
unified view for this wide range of problems, enabling efficient inference, decision-making and learning in problems with a very large number of attributes and
huge datasets. This graduate-level course will provide you with a strong foundation for both applying graphical models to complex problems and for addressing
core research topics in graphical models. The class will cover three aspects: The core representation, including Bayesian and Markov networks, and dynamic
Bayesian networks; probabilistic inference algorithms, both exact and approximate; and, learning methods for both the parameters and the structure of
graphical models. Students entering the class should have a pre-existing working knowledge of probability, statistics, and algorithms, though the class has been
designed to allow students with a strong numerate background to catch up and fully participate. It is expected that after taking this class, the students should
have obtained sufficient working knowledge of multivariate probabilistic modeling and inference for practical applications, should be able to formulate and solve
a wide range of problems in their own domain using GM and can advance into more specialized technical literature by themselves. Students are required to
have successfully completed 10701 or 10715, or an equivalent class.

Where and When

« Time: Tuesday, Thursday 12:00 - 1:20 pm
« Location: Gates-Hillman Center 4307
« Recitations:



Logistics

* References:
* Daphne Koller and Nir Friedman, Probabilistic Graphical Models
* M. l.Jordan, An Introduction to Probabilistic Graphical Models
* K. Murphy, Machine Learning: A Probabilistic Perspective
* C.M. Bishop, Pattern Recognition and Machine Learning
* D. Barber, Bayesian Reasoning and Machine Learning
* D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms

Mailing Lists:
* To contact the instructors: 10708Springl8@gmail.com
* Class announcements list: send email with title (Add me to the class announcement)

 TA:
Xiongtao Ruan Xruan@andrew.cmu.edu
Yifeng  Tao yifengt@andrew.cmu.edu
Yuanning Li yuanninl@andrew.cmu.edu

Guest Lecturers:
e Afew

Instruction aids: Piazza
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5 homework (HWO + 4 HWSs) assighments: 45% of grade
* Theory exercises, Implementation exercises

Scribe duties: 5% (~once to twice for the whole semester)

Reading report after every module: 10%

Final project: 40% of grade
* Applying PGM to the development of a real, substantial ML system

* Natural Language Processing: Innovative language alignment methods

* Computer Vision/Medical Vision: Innovative Image/text captioning, Domain transfer learning

* Computational Biology applications: Incorporating multi-omic dataset to understand the diseases.
* Causality: Learning Causal GM with missing data.

* Theoretical and/or algorithmic work
* Innovative Inference approach in the intersection of deep learning and Bayesian inference.
* Analyzing the behavior of the distributed SVI algorithms.

* 3-member team to be formed in the first three weeks, proposal, mid-way report, oral
presentation & demo, final report, peer review —> possibly conference submission !
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Course Project

Your class project is an opportunity for you to explore an interesting multivariate analysis problem of your choice in the context of a real-world data set. Projects
can be done by you as an individual, or in teams of two to three students. Each project will also be assigned a 708 instructor as a project consultant/mentor.
They will consult with you on your ideas, but the final responsibility to define and execute an interesting piece of work is yours. Your project will be worth 30% of
your final class grade, and will have two final deliverables:

1. awriteup in the form of a NIPS paper (8 pages maximum in NIPS format, including references), due Dec 3, worth 60% of the project grade, and
2. aposter presenting your work for a special ML class poster session at the end of the semester, due Nov 30, worth 20% of the project grade.

In addition, you must turn in a midway progress report (5 pages mazimum in NIPS format, including references) describing the results of your first experiments
by Oct 31, worth 20% of the project grade. Note that, as with any conference, the page limits are strict! Papers over the limit will not be considered.

Project Proposal:

You must turn in a brief project proposal (1-page maximum) by Oct 10th.

You are encouraged to comme up a topic directly related to your own current research project or research topics related to graphical models of your own interest
that bears a non-trivial technical component {either theoretical or application-oriented), but the proposed work must be new and should not be copied from your
previous published or unpublished work. For example, research on graphical models that you did this summer does not count as a class project.

* We will have a prize for the best project(s) ...

|>

Award Winning Projects:

J.Yang, Y. Liu, E. P. Xing and A. Hauptmann,
Harmonium-Based Models for Semantic Video
Representation and Classification , Proceedings of
The Seventh SIAM International Conference on Data
Mining (SDM 2007 best paper)

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, Noah A. Smith, Retrofitting
Word Vectors to Semantic Lexicons, NAACL 2015
best paper

Others ... such as KDD 2014 best paper

Other projects:

Andreas Krause, Jure Leskovec and Carlos Guestrin,
Data Association for Topic Intensity Tracking, 23rd
International Conference on Machine Learning (ICML
2006).

M. Sachan, A. Dubey, S. Srivastava, E. P. Xing and
Eduard Hovy, Spatial Compactness meets Topical
Consistency: Jointly modeling Links and Content
for Community Detection , Proceedings of The 7th
ACM International Conference on Web Search and Data
Mining (WSDM 2014).

© Eric Xing @ CMU, 2005-2015



What Are Graphical Models?
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Reasoning under uncertainty!
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The Fundamental Questions

* Representation
* How to capture/model uncertainties in possible worlds?
* How to encode our domain knowledge/assumptions/constraints?

* Inference
 How do | answers questions/queries

according to my model and/or based
given data?
. e.g.:. P(X,|D)
* Learning

 What model is "right"
for my data?

e.g.. M = arg max F(O;m)



Recap of Basic Prob. Concepts

e Representation: what is the joint probability dist. on multiple variables?

P(XDX29X37X4’X5’X6’X7’X8)

e How many state configurations in total? --- 28
e How do we represent that many element? Do we need such a big table?
e How to incorporate scientific/medical insight? %

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H| A) would require summing over all 2° configurations of the
unobserved variables

e Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?

e Arethere other est. principles?

e What if we just have data and want to learn the relationship?




What is a Graphical Model?

--- Multivariate Distribution in High-D Space

* A possible world for cellular signal transduction:

[ReceptorA ] X,

[ Kinase C ] X

Gene G ] X

[ReceptorB ] X,

[ Kinase D ] X, [ Kinase E

it

[ Gene H Xg

Xs
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GM: Structure Simplifies Representation

Gene G ] X, [ Crerns ]

[ Kinase E

Xs
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Why we may favor a PGM?

Q If X's are conditionally independent (as described by a PGM), the joint can
be factored to a product of simpler terms, e.g.,

PX, Xo, X, X, X5, Xy Xy X)

= P(X)) P(X;) P(X;| X)) P(X,| X,) P(Xs| X)
P(X| X5, X)) P(X7| Xg) P(Xs| X5, Xo)

Stay tune for what are these independencies!

0 Incorporation of domain knowledge and causal (logical) structures

1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !

© Eric Xing @ CMU, 2005-2015
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GM: Data Integration

[ReCéptérA ] X,

|

[ Kinase C ] X; Kinase D

Receptor B

] X,

© Eric Xing @ CMU, 2005-2015
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More Data Integration

* Text + Image + Network =2 Holistic Social Media

e Genome + Proteome + Transcritome + Phenome + ... = PanOmic
Biology



Why we may favor a PGM?

Q If X's are conditionally independent (as described by a PGM), the joint can
be factored to a product of simpler terms, e.g.,

Receptor B X,

PX, X, Xy X, X5, X, X, X)

Kinase E ¢, = P(X2) P(X4| Xz) P(X5‘ )(.7)

0 Incorporation of domain knowledge and causal (logical) structures

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
0 Modular combination of heterogeneous parts — data fusion

© Eric Xing @ CMU, 2005-2015
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Rational Statistical Inference

The Bayes Theorem:

, Likelihood Prior
Posterior .
l probability

probability
RN AL, ()
D p(d|h)p(h')
/ h'eH
Sum over space
of hypotheses

* This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?
* Typically the number of genes need to be modeled are in the order of thousands!

© Eric Xing @ CMU, 2005-2015
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GM: MLE and Bayesian Learning

* Probabilistic statements of ® is conditioned on the values of the observed variables A, . and prior

p(6; x)

5 €]

(AB,CDE,...)=(I,EETE...)
A= (ABCDE,..)=(ILET/T,E...)

(A,BCDE,..)=(FTT,LE,...)

@Bayes :j@p(@ | ADZ) d@

|

\ p(@|/é; x) < p(A|O)p(®; x)
4 N

© Eric Xing @ CMU, 20052015 posterior  likelihood  prior 17



Why we may favor a PGM?

Q If X's are conditionally independent (as described by a PGM), the joint can
be factored to a product of simpler terms, e.g.,

PX,, Xo, Xy X, X5, Xy X, X)

= P(X)) P(X;) P(X;| X)) P(X,| X,) P(Xs| X)
P(Xq| X3, X,) PX;| Xg) P(Xg| X5, X¢)

0 Incorporation of domain knowledge and causal (logical) structures

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
0 Modular combination of heterogeneous parts — data fusion

0O Bayesian Philosophy

e Knowledge meets data —

© Eric Xing @ CMU, 2005-2015
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5 min break ...
and enjoy the video by the imposteriors

Bradley P. Carlin Jennifer L. Hill

Professor of Biostatistics Professor of Applied Statistics and Data Science

Mayo Professor in Public Health

UNIVERSITY OF MINNESOTA

Mark Glickman

Senior Lecturer on Statistics
Department of Statistics

Harvard University

Donald Hedeker, PhD

Professor of Biostatistics, University of
Chicago

Michael |. Jordan

Pehong Chen Distinguished Professor
Department of EECS

Department of Statistics

AMP Lab

Berkeley Al Research Lab

University of California, Berkeley






You don’t have to be Bayesian to enjoy the class ....



So What Is a PGM After All?

In a nutshell:

PGM = Multivariate Statistics + Structure

GM

Multivariate Obj. Func. + Structure

© Eric Xing @ CMU, 2005-2015
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So What Is a PGM After All?

 The informal blurb:

* |tis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with

recJ) O] [ E]

—)
P(X, X5 X3,X 4, X5, X, X7,X5) P(Xy5) = P(X))P(X;)P(X3 | X1X,)P(X, | X)P(X5 | X,)
* A more formal description: P(X X3, X)P(X X P(Xo| X, Xo)

* |t refers to a family of distributions on a set of random variables that are compatible
with all the probabilistic independence propositions encoded by a graph that
connects these variables

© Eric Xing @ CMU, 2005-2015



Two types of GMs

e Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

PX,, Xo, Xy X, X, X, Xy X)

= P(X)) P(X;) P(X3| X)) P(X,| X;) P(X;| X3)
P(Xy| X35 X)) P(X;| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

PX,, X, Xy X, X5, X, Xy X)

= 1/Z exp{EX))+EX,)+EX; X)TEWX, X,)TEWX, X))
+ E(X,, X; X)+TEX, X )+EX, X5, X))}

© Eric Xing @ CMU, 2005-2015
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Bayesian Networks

Structure: DAG

e Meaning: a node is conditionally
independent of every other
node in the network outside its
Markov blanket

e Local conditional distributions
(CPD) and the DAG completely
determine the joint dist.

e Give causality relationships, and
facilitate a generative process

© Eric Xing @ CMU, 2005-2015

Ancestor

Descendent
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Markov Random Fields

Structure: undirected graph

e Meaning: a node is conditionally
independent of every other node in
the network given its Directed
neighbors

e Local contingency functions
(potentials) and the cliques in the
graph completely determine the
joint dist.

e Give correlations between variables,
but no explicit way to generate
samples

© Eric Xing @ CMU, 2005-2015
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Towards structural specification of probability distribution
e Separation properties in the graph imply independence
properties about the associated variables

* For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for
the probability distribution that the graph represents

* The Equivalence Theorem

For a graph g,
Let Dl denote the family of all distributions that satisfy I(g),
Let DQ denote the family of all distributions that factor according tog ,

Then Dl — D2

© Eric Xing @ CMU, 2005-2015 27



GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Clustering

© Eric Xing @ CMU, 2005-2015
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Questions ?

© Eric Xing @ CMU, 2005-2015
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Plan for the Class

Directed and Undirected Graphical model

 Variable Elimination, Factor and message passing, GLM, Learning fully observed un-/directed
graphical model, EM

« HMM, CRF, Topic Modeling, Factor Analysis, Spike and Slab model

* LBP, Mean field, Gibbs, MCMC

* VAE, GAN, BiGAN and friends

* SDG, SVI

 GP, DP, IBP, HDP, other spectral approaches



Fancier GMSs:
reinforcement learning

* Partially observed Mar
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Fancier GMls:
machine translation

Frow 24 trom London g 5747.

“¥e intend to begin on the first of February
unrestricted submarine werfare. We ehall endeavos
1n epite of this to keep the United States of
americs neutrel. In the event of this not succesd-
ing, we make Mexico & proposal of alliance on the
following besis: make war together, meke peace
together, gemerous financial support and an under-
stending on our pert that Mextco is to reconquer
the loet territory in Texss, New Mexico, and
arizona. The settlement in detail is left to you.
You will tnform the President of the sbove most
secretly &s soon as the outbresk of war witn the
United Stetes of America 18 certain and add the
auggestion that e should, on his own initlative,
Jepen to fumediate sdherence end at the same
time mediate betwsen Japan and ourselves. Please
call the President's attention to the fact that
the ruthless employment of our submsrines now
offera the prospect of compelling Englend In &
ened, 4T

few months to make peece.”

The HM-BIiTAM model
(B. Zhao and E.P Xing,
ACL 2006) 33




Fancier GMs:
genetic pedigree

73
(ES

An allele network

© Eric Xing @ CMU, 2005-2015 34



Fancier GMs:
solid state physics

© Eric Xing @ CMU, 2005-2015

Ising/Potts model
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Application of GMs

* Machine Learning
* Computational statistics

* Computer vision and graphics

* Natural language processing

* Informational retrieval

* Robotic control

* Decision making under uncertainty

* Error-control codes

* Computational biology

* Genetics and medical diagnosis/prognosis
* Finance and economics

* Etc.



Why graphical models

* A language for communication
* A language for computation
* Alanguage for development

* Origins:
* Wright 1920’s

* Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl
in computer science in the late 1980’s



Why graphical models

e Probability theory provides the glue whereby the parts are combined, ensuring that
the system as a whole is consistent, and providing ways to interface models to data.

e The graph theoretic side of graphical models provides both an intuitively appealing
interface by which humans can model highly-interacting sets of variables as well as a
data structure that lends itself naturally to the design of efficient general-purpose
algorithmes.

e Many of the classical multivariate probabilistic systems studied in fields such as
statistics, systems engineering, information theory, pattern recognition and
statistical mechanics are special cases of the general graphical model formalism

e The graphical model framework provides a way to view all of these systems as
instances of a common underlying formalism.

© Eric Xing @ CMU, 2005-2015 - M. Jordan 38



Plan for the Class

* Fundamentals of Graphical Models:
* Bayesian Network and Markov Random Fields
* Discrete, Continuous and Hybrid models, exponential family, GLIM
* Basic representation, inference, and learning

* Advanced topics and latest developments
* Approximate inference
* Monte Carlo algorithms
* Vatiational methods and theories
* “Infinite” GMs: nonparametric Bayesian models
* Optimization-theoretic formulations for GMs,
* Nonparametric and spectral graphical models, where GM meets kernels and matrix algebra
* Alternative GM learning paradigms,

* e.g., Margin-based learning of GMs (where GM meets SVM)
* e.g. Regularized Bayes: where GM meets SVM, and meets Bayesian, and meets NB ...

* Case studies: popular GMs and applications

e Multivariate Gaussian Models
¢ Conditional random fields
* Mixed-membership, aka, Topic models



