
Probabilistic	Graphical	Model:
A	view	from	moon

Kayhan	Batmanghelich



l Class	webpage:
l https://kayhan.dbmi.pitt.edu/node/38
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Logistics
• References:

• Daphne	Koller and	Nir Friedman,	Probabilistic	Graphical	Models
• M.	I.	Jordan,	An	Introduction	to	Probabilistic	Graphical	Models
• K.	Murphy,	Machine	Learning:	A	Probabilistic	Perspective
• C.M.	Bishop,	Pattern	Recognition	and	Machine	Learning
• D.	Barber,	Bayesian	Reasoning	and	Machine	Learning
• D.	J.	C.	MacKay,	Information	Theory,	Inference,	and	Learning	Algorithms

• Mailing	Lists:	
• To	contact	the	instructors:	10708Spring18@gmail.com
• Class	announcements	list:	send	email	with	title	(Add	me	to	the	class	announcement)

• TA:

• Guest	Lecturers:
• A	few

• Instruction	aids:	Piazza
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Xiongtao Ruan xruan@andrew.cmu.edu
Yifeng Tao yifengt@andrew.cmu.edu
Yuanning Li yuanninl@andrew.cmu.edu



• 5	homework	(HW0	+	4	HWs)	assignments:	45%	of	grade
• Theory	exercises,	Implementation	exercises	

• Scribe	duties:	5%	(~once	to	twice	for	the	whole	semester)

• Reading	report	after	every	module:	10%

• Final	project:	40%	of	grade
• Applying	PGM	to	the	development	of	a	real,	substantial	ML	system

• Natural	Language	Processing:	Innovative	language	alignment	methods	
• Computer	Vision/Medical	Vision:	Innovative	Image/text	captioning,	Domain	transfer	learning
• Computational	Biology	applications:	Incorporating	multi-omic dataset	to	understand	the	diseases.
• Causality:	Learning	Causal	GM	with	missing	data.

• Theoretical	and/or	algorithmic	work	
• Innovative	Inference	approach	in	the	intersection	of	deep	learning	and	Bayesian	inference.	
• Analyzing	the	behavior	of	the	distributed	SVI	algorithms.

• 3-member	team	to	be	formed	in	the	first	three	weeks,	proposal,	mid-way	report,	oral	
presentation	&	demo,	final	report,	peer	review		à possibly	conference	submission	!
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Past	projects:

• We	will	have	a	prize	for	the	best	project(s)	…
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What	Are	Graphical	Models?

Graph Model

Data

6

MG

D ⌘ {X(i)
1 , X(i)

2 , · · · , X(i)
m }Ni=1
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Reasoning	under	uncertainty!

Speech	recognition

Information	retrieval

Computer	vision

Robotic	control

Planning

Games

Evolution

Pedigree
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The	Fundamental	Questions

• Representation
• How	to	capture/model	uncertainties	in	possible	worlds?
• How	to	encode	our	domain	knowledge/assumptions/constraints?

• Inference
• How	do	I	answers	questions/queries	
according	to	my	model	and/or	based	
given	data?

• Learning
• What	model	is	"right"	
for	my	data?
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l Representation:	what	is	the	joint	probability	dist.	on	multiple	variables?

l How	many	state	configurations	in	total?	--- 28

l How	do	we	represent	that	many	element?	Do	we	need	such	a	big	table?
l How	to	incorporate	scientific/medical	insight?

l Inference:	If	not	all	variables	are	observable,	how	to	compute	the	
conditional	distribution	of	latent	variables	given	evidence?
l Computing	p(H|A) would	require	summing	over	all	26 configurations	of	the	

unobserved	variables

l Learning:	where	do	we	get	all	this	probabilities?	
l Maximal-likelihood	estimation?	but	how	many	data	do	we	need?
l Are	there	other	est.	principles?
l What	if	we	just	have	data	and	want	to	learn the	relationship?

),,,,,,,(  87654321 XXXXXXXXP

Recap	of	Basic	Prob.	Concepts

A

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

B

9



Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

What	is	a	Graphical	Model?
--- Multivariate	Distribution	in	High-D	Space

• A	possible	world	for	cellular	signal	transduction:	
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Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor B

Membrane

Cytosol

X1 X2

X3 X4 X5

X6

X7 X8

GM:	Structure	Simplifies	Representation

• Dependencies	among	variables
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q If	Xi's are	conditionally	independent (as	described	by	a	PGM),	the	joint	can	
be	factored	to	a	product	of	simpler	terms,	e.g.,

q Incorporation	of	domain	knowledge	and	causal	(logical)	structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Why	we	may	favor	a	PGM?
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1+1+2+2+2+4+2+4=18,	a	16-fold	reduction	from	28	in	representation	cost	!	

Stay	tune	for	what	are	these	independencies!
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TF F

Gene G Gene H

Kinase EKinase D
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GM:	Data	Integration
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More	Data	Integration

• Text	+	Image	+	Network		è Holistic	Social	Media

• Genome	+	Proteome	+	Transcritome +	Phenome +	…	è PanOmic
Biology

©	Eric	Xing	@	CMU,	2005-2015 14



q If	Xi's are	conditionally	independent (as	described	by	a PGM),	the	joint	can	
be	factored	to	a	product	of	simpler	terms,	e.g.,	

q Incorporation	of	domain	knowledge	and	causal	(logical)	structures

q Modular	combination	of	heterogeneous	parts	– data	fusion	

Why	we	may	favor	a	PGM?

©	Eric	Xing	@	CMU,	2005-2015

2+2+4+4+4+8+4+8=36,	an	8-fold	reduction	from	28	in	representation	cost	!	
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X2) P(X4| X2) P(X5| X2) P(X1) P(X3| X1) 
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Rational	Statistical	Inference

• This	allows	us	to	capture	uncertainty	about	the	model	in	a	principled	way

• But	how	can	we	specify	and	represent	a	complicated	model?
• Typically	the	number	of	genes	need	to	be	modeled	are	in	the	order	of	thousands!

©	Eric	Xing	@	CMU,	2005-2015
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The Bayes Theorem:
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GM:	MLE	and	Bayesian	Learning

• Probabilistic	statements	of Q is	conditioned	on	the	values	of	the	observed	variables Aobs and	prior
𝑝(𝜃; 𝜒)

©	Eric	Xing	@	CMU,	2005-2015
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q If	Xi's are	conditionally	independent (as	described	by	a PGM),	the	joint	can	
be	factored	to	a	product	of	simpler	terms,	e.g.,	

q Incorporation	of	domain	knowledge	and	causal	(logical)	structures

q Modular	combination	of	heterogeneous	parts	– data	fusion

q Bayesian	Philosophy
l Knowledge	meets	data

Why	we	may	favor	a	PGM?
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2+2+4+4+4+8+4+8=36,	an	8-fold	reduction	from	28	in	representation	cost	!	
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
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5	min	break	…
and	enjoy	the	video	by	the	imposteriors

Mark	Glickman





You	don’t	have	to	be	Bayesian	to	enjoy	the	class	….



So	What	Is	a	PGM	After	All?

©	Eric	Xing	@	CMU,	2005-2015

In	a	nutshell:	

PGM			=			Multivariate	Statistics	+	Structure

22

GM			=			Multivariate	Obj.	Func.	+	Structure



So	What	Is	a	PGM	After	All?

• The	informal	blurb:
• It	is	a	smart	way	to	write/specify/compose/design exponentially-large	probability	
distributions	without	paying	an	exponential	cost,	and	at	the	same	time	endow	the	
distributions	with	structured	semantics

• A	more	formal	description:
• It	refers	to	a	family	of	distributions	on	a	set	of	random	variables	that	are	compatible	
with	all	the	probabilistic	independence	propositions	encoded	by	a	graph	that	
connects	these	variables

©	Eric	Xing	@	CMU,	2005-2015
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l Directed	edges give	causality relationships	(Bayesian	Network	or	
Directed	Graphical	Model):

l Undirected	edges simply	give	correlations between	variables	
(Markov	Random	Field	or	Undirected	Graphical	model):

Two	types	of	GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}

24



Structure:	DAG

• Meaning:	a	node	is	conditionally	
independent of	every	other	
node	in	the	network	outside	its	
Markov	blanket

• Local	conditional	distributions	
(CPD)	and	the	DAG completely	
determine	the	joint dist.	

• Give	causality relationships,	and	
facilitate	a	generative process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent
Child

Bayesian	Networks
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Structure:	undirected	graph

• Meaning:	a	node	is	conditionally	
independent of	every	other	node	in	
the	network	given	its	Directed	
neighbors

• Local	contingency	functions	
(potentials)	and	the	cliques	in	the	
graph completely	determine	the	
joint dist.	

• Give	correlations between	variables,	
but	no	explicit	way	to	generate	
samples

X

Y1 Y2

Markov	Random	Fields
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Towards	structural	specification	of	probability	distribution
• Separation	properties	in	the	graph	imply	independence	
properties	about	the	associated	variables
• For	the	graph	to	be	useful,	any	conditional	independence	
properties	we	can	derive	from	the	graph	should	hold	for	
the	probability	distribution	that	the	graph	represents

• The	Equivalence	Theorem
For	a	graph						,
Let	 denote	the	family	of	all	distributions	that	satisfy		 ,
Let	 denote	the	family	of	all	distributions	that	factor	according	to	 ,

Then	

©	Eric	Xing	@	CMU,	2005-2015 27
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Density	estimation

Regression

Classification

Parametric	and	nonparametric		methods

Linear,	conditional	mixture,	nonparametric

Generative	and	discriminative	approach

Q

X

Q

X

X Y

m,s

X
X

GMs	are	your	old	friends

©	Eric	Xing	@	CMU,	2005-2015

Clustering	
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(Picture by Zoubin 
Ghahramani and 
Sam Roweis)
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An	
(incomplete)	
genealogy	of	

graphical	
models

29



Questions	?	
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Plan	for	the	Class
• Module	1:	Representation

• Directed	and	Undirected	Graphical	model
• Module	2:		Classical	Methods	of	Inference	&	Learning

• Variable	Elimination,	Factor	and	message	passing,	GLM,	Learning	fully	observed	un-/directed	
graphical	model,	EM

• Module	3:	Graphical	Model	in	Application
• HMM,	CRF,	Topic	Modeling,	Factor	Analysis,	Spike	and	Slab	model

• Module	4:	Approximate	Inference
• LBP,	Mean	field,	Gibbs,	MCMC

• Module	5:	Deep	Learning	and	Graphical	Models
• VAE,	GAN,	BiGAN and	friends

• Module	6:	Scalability	and	Optimization	
• SDG,	SVI

• Module	7:	Spectral	and	non-parametric	view
• GP,	DP,	IBP,	HDP,	other	spectral	approaches	
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Fancier	GMs:	
reinforcement	learning
• Partially	observed	Markov	decision	processes	(POMDP)
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Fancier	GMs:	
machine	translation

©	Eric	Xing	@	CMU,	2005-2015

SMT

The	HM-BiTAM	model	
(B.	Zhao	and	E.P	Xing,		
ACL	2006) 33



Fancier	GMs:	
genetic	pedigree

©	Eric	Xing	@	CMU,	2005-2015
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An	allele	network
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Fancier	GMs:	
solid	state	physics

©	Eric	Xing	@	CMU,	2005-2015

Ising/Potts	model
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Application	of	GMs
• Machine	Learning
• Computational	statistics

• Computer	vision	and	graphics
• Natural	language	processing	
• Informational	retrieval
• Robotic	control	
• Decision	making	under	uncertainty
• Error-control	codes
• Computational	biology
• Genetics	and	medical	diagnosis/prognosis
• Finance	and	economics
• Etc.
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Why	graphical	models

• A	language	for	communication
• A	language	for	computation
• A	language	for	development

• Origins:	
• Wright	1920’s
• Independently	developed	by	Spiegelhalter	and	Lauritzen	in	statistics	and	Pearl	
in	computer	science	in	the	late	1980’s
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l Probability	theory provides	the	glue whereby	the	parts	are	combined,	ensuring	that	
the	system	as	a	whole	is	consistent,	and	providing	ways	to	interface	models	to	data.	

l The	graph	theoretic side	of	graphical	models	provides	both	an	intuitively	appealing	
interface	by	which	humans	can	model	highly-interacting	sets	of	variables	as	well	as	a	
data	structure	that	lends	itself	naturally	to	the	design	of	efficient	general-purpose	
algorithms.	

l Many	of	the	classical	multivariate	probabilistic	systems studied	in	fields	such	as	
statistics,	systems	engineering,	information	theory,	pattern	recognition	and	
statistical	mechanics	are	special	cases	of	the	general	graphical	model	formalism

l The	graphical	model	framework	provides	a	way	to	view	all	of	these	systems	as	
instances	of	a	common	underlying	formalism.	

--- M.	Jordan

Why	graphical	models
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Plan	for	the	Class
• Fundamentals	of	Graphical	Models:	

• Bayesian	Network	and	Markov	Random	Fields
• Discrete,	Continuous	and	Hybrid	models,	exponential	family,	GLIM
• Basic	representation,	inference,	and	learning

• …

• Advanced	topics	and	latest	developments
• Approximate	inference

• Monte	Carlo	algorithms
• Vatiational methods	and	theories

• “Infinite”	GMs:	nonparametric	Bayesian	models
• Optimization-theoretic	formulations	for	GMs,	
• Nonparametric	and	spectral	graphical	models,	where	GM	meets	kernels	and	matrix	algebra		
• Alternative	GM	learning	paradigms,	

• e.g.,	Margin-based	learning	of	GMs	(where	GM	meets	SVM)
• e.g.	Regularized	Bayes:	where	GM	meets	SVM,	and	meets	Bayesian,	and	meets	NB	…	

• Case	studies:	popular	GMs	and	applications
• Multivariate	Gaussian	Models
• Conditional	random	fields
• Mixed-membership,	aka,	Topic	models
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