Discrete Sequential Models + General CRF

Kayhan Batmanghelich

Slides Credit:

Matt Gormley (2016)

Outline

- Case Study: Supervised Part-of-speech tagging (NLP)
 - Hidden Markov Model (HMM)
 - Maximum-Entropy Markov Model (MEMM)
 - Linear-chain CRF
 - Digression: Minimum Bayes Risk (MBR) Decoding
 - Digression: Generative vs. Discriminative
- 2. Case Study: Image Segmentation (Computer Vision)
 - General CRF (e.g. grid)
 - Hidden-state CRF (HCRF)

1. CASE STUDY: SUPERVISED PART-OF-SPEECH TAGGING (NLP)

HMMs, MEMMs, Linear-chain CRFs

Dataset for Supervised Part-of-Speech (POS) Tagging : $\mathcal{D} = \{ \boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \}_{n=1}^{N}$

Data:

Factors have local opinions (≥ 0)

Each black box looks at some of the tags Y_i and words X_i

Factors have local opinions (≥ 0)

Each black box looks at some of the tags Y_i and words X_i

Global probability = product of local opinions

Markov Random Field (MRF)

Bayesian Networks

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

Markov Random Field (MRF)

Conditional Random Field (CRF)

Conditional distribution over tags Y_i given words x_i . The factors and Z are now specific to the sentence x.

Conditional Random Field (CRF)

Conditional distribution over tags Y_i given words x_i . The factors and Z are now specific to the sentence x.

Forward-Backward Algorithm

- Sum-product BP on an HMM is called the forward-backward algorithm
- Max-product BP on an HMM is called the Viterbi algorithm

Learning and Inference Summary

For discrete variables:

	Learning	Marginal Inference	MAP Inference
НММ		Forward- backward	Viterbi
МЕММ		Forward- backward	Viterbi
Linear-chain CRF		Forward- backward	Viterbi

CRF Tagging Model

CRF Tagging by Belief Propagation

- Forward-backward is a message passing algorithm.
- It's the simplest case of belief propagation.

• Show the possible *values* for each variable

- Let's show the possible *values* for each variable
- One possible assignment

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 factors think of it ...

Viterbi Algorithm: Most Probable Assignment

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product of 7 numbers$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

Viterbi Algorithm: Most Probable Assignment

• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z)$ * product weight of one path

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z)$ * product weight of one path
- Marginal probability $p(Y_2 = a) = (1/Z)$ * total weight of all paths through a

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a) = (1/Z)$ * total weight of all paths through n

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) *$ product weight of one path
- Marginal probability $p(Y_2 = a) = (1/Z)$ * total weight of all paths through

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a) = (1/Z)$ * total weight of all paths through n

(found by dynamic programming: matrix-vector products)

(found by dynamic programming: matrix-vector products)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Oops! The weight of a path through a state also includes a weight at that state. So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the unigram factor at this variable.

 $\alpha_2(\mathbf{n})$

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = a$ "

sum = Z
(total probability
of all paths)

Hidden Markov Model

$$P(\boldsymbol{x}_{1:n}, \boldsymbol{y}_{1:n}) = \prod_{i=1}^{n} P(x_i | y_i) P(y_i | y_{i-1})$$

Shortcomings of Hidden Markov Model (1): locality of features

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

A Solution: Maximum Entropy Markov Model (MEMM)

- Why not providing the full observation sequence explicitly
 - More expressive than HMMs (not the direction of arrow no causal interpretation, X is just covariates)
- Discriminative model
 - Completely ignores modeling P(X): saves modeling effort
 - Learning objective function consistent with predictive function: **P(Y|X)**

Then, shortcomings of MEMM (and HMM) (2): the Label bias problem

What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefers to stay in state 2

Solution: Do not normalize probabilities locally

From local probabilities...

Solution: Do not normalize probabilities locally

From local probabilities to local potentials!

States with lower transitions do not have an unfair advantage!

© Eric Xing @ CMU, 2005-2015

From MEMM

From MEMM to Linear-chain CRF

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model like MEMM
 - Unlike MEMM, each factor is not normalized. Hence, usage of global Z(x) overcomes the label bias problem of MEMM
 - Models the dependence between each state and the entire observation sequence (like MEMM)

Linear-chain CRF

• Linear-chain Conditional Random Field parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$

$$= \frac{1}{Z(\mathbf{x},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

Whiteboard

- CRF model
- CRF data log-likelihood
- CRF derivatives

(side-by-side with MRF)

Learning and Inference Summary

For discrete variables:

	Learning	Marginal Inference	MAP Inference
НММ	Just counting	Forward- backward	Viterbi
МЕММ	Gradient based – decomposes and doesn't require inference (GLM)	Forward- backward	Viterbi
Linear-chain CRF	Gradient based – doesn't decompose because of Z(x) and requires marginal inference	Forward- backward	Viterbi

Slide adapted from 600.465 - Intro to NLP - J. Eisner

Features

General idea:

- Make a list of interesting substructures.
- The feature f_k(x,y) counts tokens of kth substructure in (x,y).

NVPDNTime flieslikean arrow

Count of tag P as the tag for "like"

Weight of this feature is like log of an emission probability in an HMM

NVPDNTime flieslike an arrow

- Count of tag P as the tag for "like"
- Count of tag P

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence

NVPDNTime flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P

Weight of this feature is like log of a transition probability in an HMM

NVPDNTime flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"

N V P D N Time flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"
- Count of tag bigram V P where P is the tag for "like"

N V P D N Time flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"
- Count of tag bigram V P where P is the tag for "like"
- Count of tag bigram V P where both words are lowercase

Time flies like an arrow

- Count of tag trigram N V P?
 - A bigram tagger can only consider within-bigram features: only look at 2 adjacent blue tags (plus arbitrary red context).
 - So here we need a trigram tagger, which is slower.
 - Why? The forward-backward states would remember *two* previous tags.

We take this arc once per N V P triple, so its weight is the total weight of the features that fire on that triple.

 Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).

For <u>position i</u> in a tagging, these might include:

- Full name of tag i
- First letter of tag i (will be "N" for both "NN" and "NNS")
- Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)
- Full name of word i
- Last 2 chars of word i (will be "ed" for most past-tense verbs)
- First 4 chars of word i (why would this help?)
- "Shape" of word i (lowercase/capitalized/all caps/numeric/...)
- Whether word i is part of a known city name listed in a "gazetteer"
- Whether word i appears in thesaurus entry e (one attribute per e)
- Whether i is in the middle third of the sentence

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now <u>conjoin</u> them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

N V P D N Time fli<mark>es</mark> like an arrow

At i=1, we see an instance of "template7=(BOS,N,-es)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

N V P D N Time flies like an arrow

At i=2, we see an instance of "template7=(N,V,-ke)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

NVPDNTime flies like an arrow

At i=3, we see an instance of "template7=(N,V,-an)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

NVPDNTime flies like an arrow

At i=4, we see an instance of "template7=(P,D,-ow)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At <u>each position</u> of (x,y), exactly one of the many template7 features will fire:

NVPDNTime flies like an arrow

At i=5, we see an instance of "template7=(D,N,-)" so we add one copy of that feature's weight to score(x,y)

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now <u>conjoin</u> them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)). This template gives rise to *many* features, e.g.:

score(x,y) = ...

- + θ["template7=(P,D,-ow)"] * count("template7=(P,D,-ow)")
- + θ ["template7=(D,D,-xx)"] * count("template7=(D,D,-xx)")

+ ...

With a handful of feature templates and a large vocabulary, you can easily end up with millions of features.

- Think of some attributes ("basic features") that you can compute at <u>each position</u> in (x,y).
- 2. Now conjoin them into various "feature templates."

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue.

- Given an input x, a feature that only looks at red will contribute the same weight to score(x,y1) and score(x,y2).
- So it can't help you choose between outputs y_1 , y_2 .

Generative vs. Discriminative

Liang & Jordan (ICML 2008) compares **HMM** and **CRF** with **identical features**

- Dataset 1: (Real)
 - WSJ Penn Treebank
 (38K train, 5.5K test)
 - 45 part-of-speech tags
- Dataset 2: (Artificial)
 - Synthetic data generated from HMM learned on Dataset 1 (1K train, 1K test)
- Evaluation Metric: Accuracy

CRFs: some empirical results

• Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM+	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF⁺ > MEMM⁺ >> HMM

Minimum Bayes Risk Decoding

- Suppose we given a loss function *l(y', y)* and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum expected loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= rgmin_{\hat{m{y}}} & \mathbb{E}_{m{y}\sim p_{m{ heta}}(\cdot \mid m{x})}[\ell(\hat{m{y}},m{y})] \ &= rgmin_{\hat{m{y}}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}},m{y}) \end{aligned}$$

Minimum Bayes Risk Decoding

$$h_{oldsymbol{ heta}}(oldsymbol{x}) = \operatorname*{argmin}_{\hat{oldsymbol{y}}} \ \mathbb{E}_{oldsymbol{y} \sim p_{oldsymbol{ heta}}(\cdot \mid oldsymbol{x})}[\ell(\hat{oldsymbol{y}}, oldsymbol{y})]$$

Consider some example loss functions:

The *0-1* loss function returns *1* only if the two assignments are identical and *0* otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$\begin{split} h_{\boldsymbol{\theta}}(\boldsymbol{x}) &= \operatorname*{argmin}_{\hat{\boldsymbol{y}}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})) \\ &= \operatorname*{argmax}_{\hat{\boldsymbol{y}}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x}) \end{split}$$

which is exactly the MAP inference problem!

Minimum Bayes Risk Decoding

$$h_{oldsymbol{ heta}}(oldsymbol{x}) = \operatorname*{argmin}_{\hat{oldsymbol{y}}} \ \mathbb{E}_{oldsymbol{y} \sim p_{oldsymbol{ heta}}(\cdot \mid oldsymbol{x})}[\ell(\hat{oldsymbol{y}}, oldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{v} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

2. CASE STUDY: IMAGE SEGMENTATION (COMPUTER VISION)

General CRFs, Hidden-state CRFs

Other CRFs

- So far we have discussed only 1dimensional chain CRFs
 - Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
 - E.g: Grid CRFs
 - Inference and learning no longer tractable
 - Approximate techniques used
 - MCMC Sampling
 - Variational Inference
 - Loopy Belief Propagation
 - We will discuss these techniques soon

Applications of CRF in Vision

Stereo Matching

Image Segmentation

Image Restoration

Application: Image Segmentation

 $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local classifier (like logistic-regression) $\phi_{i,j}(y_i, y_j) = \llbracket y_i = y_j \rrbracket \in \mathbb{R}^1$: test for same label $\rightarrow \langle w_{ij}, \phi_{ij}(y_i, y_j) \rangle$: penalizer for label changes (if $w_{ij} > 0$)

combined: $\operatorname{argmax}_{y} p(y|x)$ is smoothed version of local cues

original

local classification

local + smoothness

Application: Handwriting Recognition

 $\phi_i(y_i, x) \in \mathbb{R}^{\approx 1000}$: image representation (pixels, gradients) $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local classifier if x_i is letter y_i

 $\phi_{i,j}(y_i, y_j) = e_{y_i} \otimes e_{y_j} \in \mathbb{R}^{26 \cdot 26}$: letter/letter indicator $\rightarrow \langle w_{ij}, \phi_{ij}(y_i, y_j) \rangle$: encourage/suppress letter combinations

combined: $\operatorname{argmax}_y p(y|x)$ is "corrected" version of local cues

Application: Pose Estimation

Feature Functions for CRF in Vision

 $\phi_i(y_i, x)$: local representation, high-dimensional $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local classifier

 $\phi_{i,j}(y_i, y_j)$: prior knowledge, low-dimensional $\rightarrow \langle w_{ij}, \phi_{ij}(y_i, y_j) \rangle$: penalize outliers

learning adjusts parameters:

- unary w_i : learn local classifiers and their importance
- binary w_{ij} : learn importance of smoothing/penalization

 $\operatorname{argmax}_y p(y|x)$ is cleaned up version of local prediction

Case Study: Image Segmentation

- Image segmentation (FG/BG) by modeling of interactions btw RVs
 - Images are noisy.
 - Objects occupy continuous regions in an image.

Input image

Pixel-wise separate optimal labeling

© Eric Xing @ CMU, 2005-2015

[Nowozin,Lampert 2012]

Locally-consistent joint optimal labeling

Y: labelsX: data (features)S: pixelsN_i: neighbors of pixel i

• Suppose we want to image segmentation using a grid model

• Suppose we want to image segmentation using a grid model

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

- Suppose we want to image segmentation using a grid model
- What happens when we run variable elimination?

Data consists of images x and labels y.

pigeon

rhinoceros

leopard

llama

Data consists of images *x* and labels *y*.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- *z* is not observed at train or test time

leopard

Data consists of images *x* and labels *y*.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- *z* is not observed at train or test time

Data consists of images *x* and labels *y*.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- *z* is not observed at train or test time

Hidden-state CRFs

Data: $\mathcal{D} = \{ \boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \}_{n=1}^{N}$ Joint model: $p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x}, \boldsymbol{\theta})} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}, \boldsymbol{x})$

Marginalized model: $p_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) = \sum p_{\theta}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$

Hidden-state CRFs

Data: $\mathcal{D} = \{ \boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \}_{n=1}^{N}$ Joint model: $p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x}, \boldsymbol{\theta})} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha}, \boldsymbol{z}_{\alpha}, \boldsymbol{x})$ Marginalized model: $p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) = \sum_{\boldsymbol{z}} p_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$

We can train using gradient based methods: (the values x are omitted below for clarity)

$$\frac{d\ell(\boldsymbol{\theta}|\mathcal{D})}{d\boldsymbol{\theta}} = \sum_{n=1}^{N} \left(\mathbb{E}_{\boldsymbol{z}\sim p_{\boldsymbol{\theta}}(\cdot|\boldsymbol{y}^{(n)})} [f_{j}(\boldsymbol{y}^{(n)},\boldsymbol{z})] - \mathbb{E}_{\boldsymbol{y},\boldsymbol{z}\sim p_{\boldsymbol{\theta}}(\cdot,\cdot)} [f_{j}(\boldsymbol{y},\boldsymbol{z})] \right)$$

$$= \sum_{n=1}^{N} \sum_{\alpha} \left(\sum_{\boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{z}_{\alpha} \mid \boldsymbol{y}^{(n)}) f_{\alpha,j}(\boldsymbol{y}_{\alpha}^{(n)},\boldsymbol{z}_{\alpha}) - \sum_{\boldsymbol{y}_{\alpha},\boldsymbol{z}_{\alpha}} p_{\boldsymbol{\theta}}(\boldsymbol{y}_{\alpha},\boldsymbol{z}_{\alpha}) f_{\alpha,j}(\boldsymbol{y}_{\alpha},\boldsymbol{z}_{\alpha}) \right)$$
Inference on
clamped
factor graph
Inference on
full
factor graph
Inference on
Infere

Learning and Inference Summary

	Learning	Marginal Inference	MAP Inference
нмм	Just counting	Forward- backward	Viterbi
MEMM	Gradient based – decomposes and doesn't require inference (GLIM)	Forward- backward	Viterbi
Linear-chain CRF	Gradient based – doesn't decompose because of <i>Z</i> (<i>x</i>) and requires marginal inference	Forward- backward	Viterbi
General CRF	Gradient based – doesn't decompose because of <i>Z</i> (<i>x</i>) and requires (approximate) marginal inference	(approximate methods)	(approximate methods)
HCRF	Gradient based – same as General CRF	(approximate methods)	(approximate methods)

Summary

- HMM:
 - Pro: Easy to train
 - Con: Misses out on rich features of the observations
- MEMM:
 - Pro: Fast to train and supports rich features
 - Con: Suffers (like the HMM) from the label bias problem
- Linear-chain CRF:
 - Pro: Defeats the label bias problem with support for rich features
 - Con: Slower to train
- MBR Decoding:
 - the principled way to account for a loss function when decoding from a probabilistic model
- Generative vs. Discriminative:
 - gen. is better if the model is well-specified
 - disc. is better if the model is misspecified
- General CRFs:
 - Exact inference won't suffice for high treewidth graphs
 - More general topologies can capture intuitions about variable dependencies
- HCRF:
 - Training looks very much like CRF training
 - Incorporation of hidden variables can model domain specific knowledge