
Discrete Sequential Models
+

General CRF
Kayhan Batmanghelich

1

Slides Credit:
Matt Gormley (2016)

3

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

1. Marginal Inference

2. Partition Function

x̂ = argmax
x

p(x | ✓)
3. MAP Inference

4

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample

2:
time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample

4:
with youtime will see

n v p n nSample

3:
flies withfly their wings

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

1. Marginal Inference

2. Partition Function

x̂ = argmax
x

p(x | ✓)
3. MAP Inference

Today’s Lecture…

…is really about Conditional
Random Fields (CRFs), but in
the guise of two case studies:

1. Part-of-speech (POS)
tagging

2. Image segmentation

Outline
1. Case Study: Supervised Part-of-speech tagging

(NLP)
– Hidden Markov Model (HMM)
– Maximum-Entropy Markov Model (MEMM)
– Linear-chain CRF
– Digression: Minimum Bayes Risk (MBR) Decoding
– Digression: Generative vs. Discriminative

2. Case Study: Image Segmentation
(Computer Vision)
– General CRF (e.g. grid)
– Hidden-state CRF (HCRF)

5

1. CASE STUDY: SUPERVISED PART-
OF-SPEECH TAGGING (NLP)

HMMs, MEMMs, Linear-chain CRFs

6

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

7

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

X1 X2 X3 X4 X5

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0Y0

<START>

Factors have local opinions (≥ 0)

8

Each black box looks at some of the tags Yi and words Xi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Note: We chose to reuse
the same factors at

different positions in the
sentence.

Factors have local opinions (≥ 0)

9

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

Each black box looks at some of the tags Yi and words Xi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

p(n, v, p, d, n, time, flies, like, an, arrow) = ?

Global probability = product of local opinions

10

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

Each black box looks at some of the tags Yi and words Xi

p(n, v, p, d, n, time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Uh-oh! The probabilities of
the various assignments sum

up to Z > 1.
So divide them all by Z.

Markov Random Field (MRF)

11

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

p(n, v, p, d, n, time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Yi and words Xi
The individual factors aren’t necessarily probabilities.

time flies like an arrow

n v p d n<START>

Bayesian Networks

12

But sometimes we choose to make them probabilities.
Constrain each row of a factor to sum to one. Now Z = 1.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * …)

Markov Random Field (MRF)

13

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

p(n, v, p, d, n, time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Yi and words Xi

Conditional Random Field (CRF)

14time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Yi given words xi.
The factors and Z are now specific to the sentence x.

p(n, v, p, d, n | time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

Conditional Random Field (CRF)

15time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Yi given words xi.
The factors and Z are now specific to the sentence x.

p(n, v, p, d, n | time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

We say the variables Xi have been
“clamped” to their values xi.

This is equivalent to multiplying in an
“evidence potential” which is a point

mass with all its weight on Xi = xi

Forward-Backward Algorithm

• Sum-product BP on an HMM is called the
forward-backward algorithm

• Max-product BP on an HMM is called the
Viterbi algorithm

16

Learning and Inference Summary

For discrete variables:

17

Learning Marginal
Inference

MAP
Inference

HMM Forward-
backward

Viterbi

MEMM Forward-
backward

Viterbi

Linear-chain
CRF

Forward-
backward

Viterbi

Y2 Y3Y1

CRF Tagging Model

18

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

19

……

find preferred tags

CRF Tagging by Belief Propagation

v 0.3
n 0
a 0.1

v 1.8
n 0
a 4.2α βα

belief

message message

v 2
n 1
a 7

• Forward-backward is a message passing algorithm.
• It’s the simplest case of belief propagation.

v 7
n 2
a 1

v 3
n 1
a 6

β
v n a

v 0 2 1
n 2 1 0
a 0 3 1

v 3
n 6
a 1

v n a
v 0 2 1
n 2 1 0
a 0 3 1

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)

Y2 Y3Y1

20

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

So Let’s Review Forward-Backward …

Y2 Y3Y1

So Let’s Review Forward-Backward …

21

v

n

a

v

n

a

v

n

a

START END

• Show the possible values for each variable
find preferred tags

Y2 Y3Y1

22

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment

find preferred tags

So Let’s Review Forward-Backward …

Y2 Y3Y1

23

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

find preferred tags

So Let’s Review Forward-Backward …

Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment

24

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

ψ {0,1
}(S

TART,v)

ψ
{1,2} (v,a)

ψ {2,3}
(a,n)

ψ{3,4}(a,END)
ψ{1}(v)

ψ{2}(a)

ψ{3}(n)

Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment

25

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path

ψ {0,1
}(S

TART,v)

ψ
{1,2} (v,a)

ψ {2,3}
(a,n)

ψ{3,4}(a,END)
ψ{1}(v)

ψ{2}(a)

ψ{3}(n)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

26

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

27

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

28

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through v

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

29

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

30

v

n

a

v

n

a

v

n

a

START END

find preferred tags

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

31

v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(found by dynamic programming: matrix-vector products)

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

32

v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(a + b + c) (x + y + z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

total weight of all paths through
= × ×

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

33

v

n

a

v

n

a

v

n

a

START END

find preferred tags

n

ψ{2}(n)

α2(n) b2(n)

α2(n) ψ{2}(n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path
through a state also

includes a weight at that
state.

So α(n)·β(n) isn’t enough.

The extra weight is the
opinion of the unigram
factor at this variable.

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

34

v

n

a

n

a

v

n

a

START END

find preferred tags

ψ{2}(v)

α2(v) b2(v)

“belief that Y2 = v”v

“belief that Y2 = n”

total weight of all paths through
= × ×

v

α2(v) ψ{2}(v) b2(v)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

35

v

n

a

v

n

a

v

n

a

START END

find preferred tags

ψ{2}(a)

α2(a) b2(a)

“belief that Y2 = a”

“belief that Y2 = v”

“belief that Y2 = n”

sum = Z
(total probability
of all paths)

v 1.8
n 0
a 4.2

v 0.3
n 0
a 0.7

divide
by Z=6 to

get
marginal

probs

total weight of all paths through
= × ×

a

α2(a) ψ{2}(a) b2(a)

Hidden Markov Model

© Eric Xing @ CMU, 2005-2015 37

Y1 Y2 … … … Yn

X1 X2 … … … Xn

P (x1:n,y1:n) =
nY

i=1

P (xi|yi)P (yi|yi�1)

START

Shortcomings of Hidden Markov
Model (1): locality of features

l HMM models capture dependences between each state and only its
corresponding observation
l NLP example: In a sentence segmentation task, each segmental state may

depend not just on a single word (and the adjacent segmental stages), but also
on the (non-local) features of the whole line such as line length, indentation,
amount of white space, etc.

l Mismatch between learning objective function and prediction
objective function
l HMM learns a joint distribution of states and observations P(Y, X), but in a

prediction task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 38

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START

A Solution:
Maximum Entropy Markov Model (MEMM)

l Why not providing the full observation sequence explicitly
l More expressive than HMMs (not the direction of arrow – no causal interpretation,

X is just covariates)

l Discriminative model
l Completely ignores modeling P(X): saves modeling effort

l Learning objective function consistent with predictive function: P(Y|X)

© Eric Xing @ CMU, 2005-2015 39

Y1 Y2 … … … Yn

X1:n

START

Then, shortcomings of MEMM (and
HMM) (2): the Label bias problem

© Eric Xing @ CMU, 2005-2015 40

What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefers to stay in state 2

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.6
0.2

0.2

0.2

0.2

0.2

0.45

0.55
0.2

0.3

0.1

0.1

0.3

0.5

0.5
0.1

0.3

0.2

0.2

0.2

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 41

Path Probability
1 à 1 à 1 à 1

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 42

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 43

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 44

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 45

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 46

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 47

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path

Yet locally it
seems state 1
wants to go to
state 2 and state
2 wants to
remain in state 2.

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 48

Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path

Yet locally it
seems state 1
wants to go to
state 2 and state
2 wants to
remain in state 2. Why does this happen?

• State 1 has only two transitions but state 2 has 5

• Average transition probability from state 2 is lower

This is the Label Bias Problem in MEMM: a preference
for states with lower number of transitions over others

Solution:
Do not normalize probabilities locally

© Eric Xing @ CMU, 2005-2015 49

From local probabilities…

• States with lower transitions do not have an unfair advantage!

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4

Solution:
Do not normalize probabilities locally

© Eric Xing @ CMU, 2005-2015 50

From local probabilities to local potentials!
States with lower transitions do not have an unfair advantage!

20

3010

20

10

20

20

30

2020

30

10

10

30

5

510

30

20

20

20

From MEMM ….

© Eric Xing @ CMU, 2005-2015 51

Y1 Y2 … … … Yn

x1:n

START

From MEMM to Linear-chain CRF

l CRF is a partially directed model
l Discriminative model like MEMM
l Unlike MEMM, each factor is not normalized. Hence, usage of global Z(x)

overcomes the label bias problem of MEMM
l Models the dependence between each state and the entire observation sequence

(like MEMM)

© Eric Xing @ CMU, 2005-2015 52

Y1 Y2 … … … Yn

x1:n

START

Linear-chain CRF
l Linear-chain Conditional Random Field parametric form:

© Eric Xing @ CMU, 2005-2015 53

Y1 Y2 … … … Yn

x1:n

START

unarybinary

Whiteboard

• CRF model
• CRF data log-likelihood
• CRF derivatives

(side-by-side with MRF)

54

Learning and Inference Summary

For discrete variables:

55

Learning Marginal
Inference

MAP
Inference

HMM Just counting Forward-
backward

Viterbi

MEMM Gradient based –
decomposes and doesn’t
require inference (GLM)

Forward-
backward

Viterbi

Linear-chain
CRF

Gradient based – doesn’t
decompose because of
Z(x) and requires
marginal inference

Forward-
backward

Viterbi

Features

General idea:
• Make a list of interesting substructures.
• The feature fk(x,y) counts tokens of kth

substructure in (x,y).

56

Slide adapted from 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�

Time flies like an arrow
N V P D N

Weight of this feature is like
log of an emission probability
in an HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence

Time flies like an arrow
N V P D N

0 1 2 3 4 5

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P

Time flies like an arrow
N V P D N

Weight of this feature is like
log of a transition probability
in an HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�
§ Count of tag bigram V P where P is the tag for �like�

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�
§ Count of tag bigram V P where P is the tag for �like�
§ Count of tag bigram V P where both words are lowercase

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging …

§ Count of tag trigram N V P?
§ A bigram tagger can only consider within-bigram features:

only look at 2 adjacent blue tags (plus arbitrary red context).
§ So here we need a trigram tagger, which is slower.
§ Why? The forward-backward states would remember two previous

tags.

Time flies like an arrow
N V P D N

N V V PP

We take this arc once per N V P triple,
so its weight is the total weight of
the features that fire on that triple.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can

compute at each position in (x,y).

For position i in a tagging, these might include:

§ Full name of tag i

§ First letter of tag i (will be �N� for both �NN� and �NNS�)

§ Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)

§ Full name of word i

§ Last 2 chars of word i (will be �ed� for most past-tense verbs)

§ First 4 chars of word i (why would this help?)

§ �Shape� of word i (lowercase/capitalized/all caps/numeric/…)

§ Whether word i is part of a known city name listed in a

�gazetteer�

§ Whether word i appears in thesaurus entry e (one attribute per e)

§ Whether i is in the middle third of the sentence

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Time flies like an arrow
N V P D N

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template7 features will fire:

At i=1, we see an instance of “template7=(BOS,N,-es)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template7 features will fire:

Time flies like an arrow
N V P D N

At i=2, we see an instance of “template7=(N,V,-ke)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template7 features will fire:

Time flies like an arrow
N V P D N

At i=3, we see an instance of “template7=(N,V,-an)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template7 features will fire:

Time flies like an arrow
N V P D N

At i=4, we see an instance of “template7=(P,D,-ow)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template7 features will fire:

Time flies like an arrow
N V P D N

At i=5, we see an instance of “template7=(D,N,-)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).
This template gives rise to many features, e.g.:

score(x,y) = …
+ θ[�template7=(P,D,-ow)�] * count(�template7=(P,D,-ow)�)
+ θ[�template7=(D,D,-xx)�] * count(�template7=(D,D,-xx)�)
+ …

With a handful of feature templates and a large vocabulary, you
can easily end up with millions of features.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue.
§ Given an input x, a feature that only looks at red will contribute

the same weight to score(x,y1) and score(x,y2).
§ So it can�t help you choose between outputs y1, y2.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Generative vs. Discriminative

Liang & Jordan (ICML
2008) compares HMM
and CRF with identical
features
• Dataset 1: (Real)

– WSJ Penn Treebank
(38K train, 5.5K test)

– 45 part-of-speech tags

• Dataset 2: (Artificial)
– Synthetic data

generated from HMM
learned on Dataset 1
(1K train, 1K test)

• Evaluation Metric:
Accuracy

74

93.50%

89.80%

95.60%

87.90%

84%

86%

88%

90%

92%

94%

96%

98%

Dataset 1 Dataset 2

HMM

CRF

M
odel is

miss
pecif

ied
M

odel is

well-s
pecif

ied

CRFs: some empirical results
l Parts of Speech tagging

l Using same set of features: HMM >=< CRF > MEMM
l Using additional overlapping features: CRF+ > MEMM+ >> HMM

© Eric Xing @ CMU, 2005-2015 75

Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are

asked for a single tagging
• How should we choose just one from our probability

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns

the variable assignment with minimum expected loss
under the model’s distribution

76

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The 0-1 loss function returns 1 only if the two assignments
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the MAP inference problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

77

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The Hamming loss corresponds to accuracy and returns the number
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

78

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

2. CASE STUDY: IMAGE
SEGMENTATION (COMPUTER VISION)

General CRFs, Hidden-state CRFs

79

Other CRFs
l So far we have discussed only 1-

dimensional chain CRFs

l Inference and learning: exact

l We could also have CRFs for

arbitrary graph structure

l E.g: Grid CRFs

l Inference and learning no longer tractable

l Approximate techniques used

l MCMC Sampling

l Variational Inference

l Loopy Belief Propagation

l We will discuss these techniques soon

© Eric Xing @ CMU, 2005-2015 80

Applications of CRF in Vision

Image Segmentation

© Eric Xing @ CMU, 2005-2015 81

Stereo Matching Image Restoration

Application: Image Segmentation

© Eric Xing @ CMU, 2005-2015 82

Application: Handwriting Recognition

© Eric Xing @ CMU, 2005-2015 83

Application: Pose Estimation

84

Penalizes unrealistic
poses

Local classifier for
each part

Cascaded Models for Articulated Pose Estimation, B. Sapp, A. Toshev, B. Taskar

Feature Functions for CRF in Vision

© Eric Xing @ CMU, 2005-2015 86

Case Study: Image Segmentation
l Image segmentation (FG/BG) by modeling of interactions btw RVs

l Images are noisy.

l Objects occupy continuous regions in an image.

© Eric Xing @ CMU, 2005-2015 87

Input image Pixel-wise separate

optimal labeling
Locally-consistent

joint optimal labeling

[Nowozin,Lampert 2012]

Y*= argmax
y∈{0,1}n

Vi (yi,X)+ Vi, j (yi, yj)
j∈Ni

∑
i∈S
∑

i∈S
∑
#

$
%
%

&

'
(
(
.

Y: labels

X: data (features)

S: pixels

Ni: neighbors of pixel i

Unary Term Pairwise Term

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

88

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

89

Assuming we divide
into foreground /
background, each

factor is a table with 22

entries.

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

90

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

91

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

92

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

93

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

94

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

95

This new factor has 25

entries

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

96

For an MxM grid the
new factor has 2M

entries

…

… ……………

Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

97

For an MxM grid the
new factor has 2M

entries

…

… ……………

In general, for high
treewidth graphs like

this, we turn to
approximate inference

(which we’ll cover soon!)

Case Study: Object Recognition

Data consists of images x and labels y.

98

pigeon

leopard llama

rhinoceros

Case Study: Object Recognition

Data consists of images x and labels y.

99

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

Case Study: Object Recognition

Data consists of images x and labels y.

100

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

X
1

Z
1

X2

Z2

X3

Z3

X 4

Z 4
X 5

Z 5
X7

Z7

X 6

Z 6

Y

Case Study: Object Recognition

Data consists of images x and labels y.

101

• Preprocess data into
“patches”

• Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

leopard

• Define graphical
model with these
latent variables in
mind

• z is not observed at
train or test time

ψ2 ψ4

X
1

Z
1

ψ
1

X2

Z2

ψ3

X3

Z3

ψ5
X 4

Z 4

ψ 7
X 5

Z 5

ψ 9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4

Y

Hidden-state CRFs

102

Joint model:

Marginalized model:

leopard

ψ2 ψ4

X
1

Z
1

ψ
1

X2

Z2

ψ3

X3

Z3

ψ5
X 4

Z 4

ψ 7
X 5

Z 5

ψ 9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4

Y

p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

D = {x(n),y(n)}Nn=1Data:

Hidden-state CRFs

103

Joint model:

Marginalized model: p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

d`(✓|D)

d✓
=

NX

n=1

⇣
Ez⇠p✓(·|y(n))[fj(y

(n), z)]� Ey,z⇠p✓(·,·)[fj(y, z)]
⌘

=
NX

n=1

X

↵

X

z↵

p✓(z↵ | y(n))f↵,j(y
(n)
↵ , z↵)�

X

y↵,z↵

p✓(y↵, z↵)f↵,j(y↵, z↵)

!

Inference on
full
factor graph

Inference on
clamped
factor graph

D = {x(n),y(n)}Nn=1Data:

Learning and Inference Summary

104

Learning Marginal
Inference

MAP Inference

HMM Just counting Forward-
backward

Viterbi

MEMM Gradient based –
decomposes and doesn’t
require inference (GLIM)

Forward-
backward

Viterbi

Linear-chain
CRF

Gradient based – doesn’t
decompose because of Z(x)
and requires marginal
inference

Forward-
backward

Viterbi

General CRF Gradient based – doesn’t
decompose because of Z(x)
and requires (approximate)
marginal inference

(approximate
methods)

(approximate
methods)

HCRF Gradient based – same as
General CRF

(approximate
methods)

(approximate
methods)

Summary

• HMM:

– Pro: Easy to train

– Con: Misses out on rich features of the observations

• MEMM:

– Pro: Fast to train and supports rich features

– Con: Suffers (like the HMM) from the label bias problem

• Linear-chain CRF:

– Pro: Defeats the label bias problem with support for rich features

– Con: Slower to train

• MBR Decoding:

– the principled way to account for a loss function when decoding from a probabilistic model

• Generative vs. Discriminative:

– gen. is better if the model is well-specified

– disc. is better if the model is misspecified

• General CRFs:

– Exact inference won’t suffice for high treewidth graphs

– More general topologies can capture intuitions about variable dependencies

• HCRF:

– Training looks very much like CRF training

– Incorporation of hidden variables can model domain specific knowledge

105

