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Review: Generative vs Discriminative
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Review: Conditional Random Field
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P(y|lx) = Z(xlA ) exp( Z Zkkfk (Yi, Yi—1, )+Zﬂzgl(yi®)))

i=1 e—— __~

i
< A E(yi, i1, %) + 1" gy, xm

1=1
Zexp Z >\Tf yuyz 1,X )""_,u g(yzv )))
y 1=1

When can lignore Z(x, A, u):
* ComputingargmaxP(y|x; A, u)? \/
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CRF learning | e

o Given {(xy, Yq)}4=1", find A%, H* such that
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Y=(%ps2)

o coce
— eo0o
CRF learning oo
VLA, p) = Z(Zf(yd,i,yd,i—laxd)—Z(P(Y\Xd)Zf(yz‘,yi—hxd)))
e Computing the rﬁgéeizei(pectations: ﬁ =

e Requires exponentially large number of summations: Is it intractable?

n n

Z(P(Y\Xd)zf(yz‘,yz‘—l,xd)) — Z(Zf(yiayi—laxd)P(Y|Xd))

y =1 1=1

_ Z Z f(yis yio1,%a) P(Yi, Yi—1]%a)

=1 Yi,Yi—1

Expectation of f over the corresponding marginal
probability of neighboring nodes!!

e Tractable!
e Can compute marginals using the sum-product algorithm on the chain

© Eric Xing @ CMU, 2005-2015 6



CRF learning

e Computing marginals using junction-tree calibration:
I S L
(ip)

ao(yiayz‘—l) = eXp()\Tf(yiayi—laxd)
+1" gy, Xq))

> > :> :>
@ Y2 /\ Y3 /\ Yo /\ Y Yo1Yn

1,2 Yo, Xg /7 ... Y0, Yt

e Junction Tree Initialization:

ﬂ‘ter callbratlor"yf( Also called

forward-backward algorithm
yzayz 1|Xd) . a(yiayi—l)

oy, Yi—
= P(yi, yi—1|Xa) = = (y%ay(zy‘lz 5= o' (Yiy Yi-1)
Yi Yi—1 19 J1—
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CRF learning 2 -

e Computing feature expectations using calibrated potentials:

f(yiayi—laxd)P(yiayi—l‘Xd) = Z f(yz’ayi—laxd)a/(yia yi—l)
YiYi—1
Jow we know how to computeW,L(%,u):

N n n
V)\L(A7 /’L> — Z(Z f(yd,i7 Yd,i—1, Xd) T Z(P(Y|Xd) Z f(yZ’ Yi—1, Xd)))
d=1 i=1 y i=1
N n
— Z(Z(f(yd,ivyd,i—l7xd) o Z O/(yiay’i—l)f<yi7yi_l’xd>))
d=1 =1 YiYi—1
e Learning can now be done using gradient ascent:
A — 2O 4w, LA, 4 0)
pt = O g LD )
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e In practice, we use a Gaussian Regularizer for the parameter
vector to improve generalizability

very slow conve%g'n e

e In practice, gradientascent h

e Alternatives:
Conjugate Gradient method
Limited Memory Quasi-Newton Methods
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2. CASE STUDY: IMAGE
SEGMENTATION (COMPUTER VISION)



A R
Other CRFs e2:

e So far we have discussed only 1-
dimensional chain CRFs

e Inference and learning: exact O—O3—CO—~0
e We could also have CRFs for ,/;,/‘ﬁ ,/: 'XN
arbitrary graph structure ﬁﬁﬁﬁ ®
e E.g: Grid CRFs
e Inference and learning no longer tractable ,/z F/‘
e Approximate techniques used ﬁ ﬁ
MCMC Sampling \.,‘
Variational Inference

Loopy Belief Propagation

e We will discuss these techniques soon
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[fo%o}l/gatlons of Clg'lS |n)V|S|on

C

Stereo I\/Iatchlng )/ Image Restoration

—

)
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Plylx) HE
Ag{oflc)atlgh | e

di(y;. x) € R¥V90: ocal image features, e.g. bag-of-words
—  (wj, Oi(y;. z)> local classifier (like logistic-regression)
®i i (i, 1/J = l//—ATJ]] c R!: test for same label
—  (wij. dijlyia7)): penalizer for label changes (if w;; > 0)

combined: argmax, p(y|z) is smoothed version of local cues

glnal \5 icafion_ local + smoothness

@W'M
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Case Study: Image Segmentation

e Image segmentation (FG/BG) by modeling of interactions btw RVs

e Images are noisy.
e Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]

Input image Pixel-wise separate Locally-consistent
optimal labeling joint optimal labeling
Unary Term  Pairwise Term
P A \ Y: labels
Y* = aroma (v..X) + vyl X: data (features)
gmax| > V(v X)+ 3, X Vvl o
Y0117 | ies i€S JEN;

N;: neighbors of pixel i
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Grid CRF

* Suppose we want to image segmentation using a grid model
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Grid CRF

* Suppose we want to image segmentation using a grid model




dO I

'i 4(’.’“‘@ Grid CRF

ubpose we want to image segmentation using a grid model
A% ¥What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
. th]}happens when we run v§rlable elimination?
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Grid CRF
<

* Suppose we Mt to image segmentation using a grid model
* What happgﬁs when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Grid CRF

Suppose we want to image segmentation using a grid model
What happens when we run variable elimination?

— .
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Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?
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Application: Pose Estimation

input output

head

“| state space: I=[I,, 1, i, LI
part support sizes: [h, w]

PS model ) e

rd
-
i
|
-
.
.
™.

efficient
inference

rgarm

torso

—

llarm  rlarm

V3
p(l|z) o exp lgﬁww I+ Z'O Q (L;, x)

Penalizes unrealistic Local classifier for
poses each part

|
/

argmax,, p(y|x) is cleaned up version of local prediction

. . . 27
Cascaded Models for Articulated Pose Estimation, B. Sapp, A. Toshev, B. Taskar



Feature Functions for CRF in Vision

®i(y;, x): local representation, high-dimensional
—  (wj, ¢i(y;. x)): local classifier

-

bi (i, yj): prior knowledge, low-dimensional
(u

— ij » qz'bij(g/,i, yj)>: penalize outliers

learning adjusts parameters:

» unary w;: learn local classifiers and their importance
» binary w;;: learn importance of smoothing/penalization

argmax,, p(y|z) is cleaned up version of local prediction
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Case Study: Object Recognition

Data consists of images x and labels y.

\ \ X
\ » L

leopard
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
l[atent variables in
mind

z is not observed at
train or test time
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(
Case Study: Objeg?c%\exgognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time
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Hidden-state CRFs P(Yx)

Data: D = @) y") s @

1
Joint model: p@(yaz | 213) — Z(CE 9) H¢a(ya7za,$)

Marginalized model: Pg (y | x) Zpg Y,z | x)

34



Hidden-state CRFs

Data: D = {&™),y"™} L,
1
Z(x,0)

Jointmodel:  po(y,z | x) = ya,za,

Marginalized model: Po (y | x) Zpg Y,z | x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

(0D
(d9| ) _ 3 (]Ezwpe(.w(n))[fj(y(n),z)] _ ]Ey,zwpe(_,,)[fj(y,z)D

n=1

N
Zy: Y (?pe (Zo | y(n) (ygn),za Z ?G(yavzazfa,j(ywza))

n=1 « Za Yo Zx
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Learning and Inference Summary

Learning Marginal MAP Inference
Inference
HMM Just counting Forward- Viterbi
backward
MEMM Gradient based - Forward- Viterbi
decomposes and doesn’t backward
require inference (GLIM)
Linear-chain Gradient based — doesn’t Forward- Viterbi
CRF decompose because of Z(x) | backward

and requires marginal
inference

General CRF Gradient based — doesn’t (approximate (approximate
decompose because of Z(x) | methods) methods)
and requires (approximate)
marginal inference

HCRF Gradient based — same as (approximate (approximate

General CRF

methods)

methods)




Summary

HMM:
— Pro: Easy to train
— Con: Misses out on rich features of the observations
MEMM:
— Pro: Fast to train and supports rich features
— Con: Suffers (like the HMM) from the label bias problem
Linear-chain CRF:
— Pro: Defeats the label bias problem with support for rich features
— Con: Slower to train
MBR Decoding:

— the principled way to account for a loss function when decoding from a probabilistic model

Generative vs. Discriminative:
— gen. is better if the model is well-specified
— disc. is better if the model is misspecified

General CRFs:

— Exact inference won’t suffice for high treewidth graphs
— More general topologies can capture intuitions about variable dependencies

HCRF:

— Training looks very much like CRF training
— Incorporation of hidden variables can model domain specific knowledge



Introduction to Topic Modeling



Topic Modeling

Motivation:

Suppose you’re given a massive corpora and asked to carry out the
following tasks

* Organize the documents into thematic categories

* Describe the evolution of those categories over time

* Enable a domain expert to analyze and understand the content
* Find relationships between the categories

* Understand how authorship influences the content




Topic Modeling

Motivation:

Suppose you’re given a massive corpora and asked to carry out the
following tasks

* Organize the documents into thematic categories

* Describe the evolution of those categories over time

* Enable a domain expert to analyze and understand the content
* Find relationships between the categories

* Understand how authorship influences the content

Topic Modeling:

A method of (usually unsupervised) discovery of latent or hidden structure
in a corpus

* Applied primarily to text corpora, but techniques are more general

* Provides a modeling toolbox

* Has prompted the exploration of a variety of new inference methods to
accommodate large-scale datasets



Topic Modeling

Dirichlet-multinomial regression (DMR) topic model on ICML
(Mimno & McCallum, 2008)

Topic 0 [0.152]

Topic 54 [0.051]

0 2006 007 2008

Topic 99 [0.066]

1.0 3004 2005 2006 2008

problem, optimization, problems, convex, convex optimization,
linear, semidefinite programming, formulation, sets, constraints,
proposed, margin, maximum margin, optimization problem, linear
programming, programming, procedure, method, cutting plane,
solutions

decision trees, trees, tree, decision tree, decision, tree ensemble,
junction tree, decision tree learners, leaf nodes, arithmetic circuits,
ensembles modts, skewing, ensembles, anytime induction decision
trees, trees trees, random forests, objective decision trees, tree
learners, trees grove, candidate split

inference, approximate inference, exact inference, markov chain,
models, approximate, gibbs sampling, variational, bayesian,
variational inference, variational bayesian, approximation, sampling,
methods, exact, bayesian inference, dynamic bayesian, process,

memc, efficient http:// www.cs.umass.edu/~mimno/icml100.html




Topic Modeling

* Map of NIH Grants

(Talley et al., 2011)
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Other Applications of Topic Models

* Spacial LDA

(Wang & Grimson, 2007)

SLDA




Outline

* Review: Latent Dirichlet Allocation (LDA)
1. Beta-Bernoulli
2. Dirichlet-Multinomial
3. Dirichlet-Multinomial Mixture Model
4. LDA



Beta-Bernoulli Model

e Beta Distribution

1

xa—l —ajﬁ_l
@p” 10

F(dlo ) =

— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,6=1.0
— a=5.0,6=5.0
— a=10.0,8=5.0

f(dla, )




Beta-Bernoulli Model

e Generative Process

For each wordn € {1,..., N}
x, ~ Bernoulli(¢)

¢ ~ Beta(a, 3) [draw distribution over words]

[draw word]

* Example corpus (heads/tails)

H T [T H _[H T T H [ H
X, X, X3 X, Xo  Xg X, Xg Xy o X




Dirichlet-Multinomial Model

 Dirichlet Distribution

1

xa—l —ajﬁ_l
@p” 10

F(dlo ) =

— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,6=1.0
— a=5.0,6=5.0
— a=10.0,6=5.0

f(dla, )




Dirichlet-Multinomial Model

 Dirichlet Distribution

[T ()

p(dla) = ﬁH o1 where B(a) =

(Zk=1 ay)




Dirichlet-Multinomial Model

E \\\%Qg%&@gg,%ﬁﬂ

x2 03 02
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Dirichlet-Multinomial Model

e Generative Process

6
pelR
@v Dir(3) [draw distribution over words]
reachwordn € {1,..., N}
T, ~ Mult(1, @) [draw word]

* Example corpus

X, X, X3 X,  X¢  Xg X5 Xg Xy o Xy



Dirichlet-ﬁultinomial Mixture Model

\6“ < \ — Aft{l{
r{')cess > :}o() @ whizh
Wf’“’ éz\u:c;:o

.
% ;Ié > “mixture”

e Generativ

* Example corpus

X11 X12 X13 X21 X22 X23 X31 X32 X33 X34

Document 1 Document 2 Document 3



Dirichlet-Multinomial Mixture Model

. ,&.enerative Process

WL e

For eac ick € {1,. [{
é
SGSD), dhe
{0 ~ Dir(cx

C

dize (%) De /RB

}:
(R

[draw distribution over words]
[dmw distribution over topics]|

For each document m &
9. ~ Mult(1,8) W"‘C“ J"‘e [draw topic assignment|
oreachwordn € {1,..., N, }
Tmn ~ Mult(1, qbzm) [draw word]
Example corpus ?’*

X X Xg3 X Xy  Xog | Y | Xy | 2

Document 1

Document 2

Document 3



Mixture vs. Admixture (LDA)
< N 4 e 2,

\
topics —

documents = () () ()

]

“admixture” <

> “mixture”

Diagrams from Wallach, JHU 2011, slides




Latent Dirichlet Allocation

e Generative Process

<€— topics
“admixture” <
<€— documents

* Example corpus

X11 X12 X13 X21 X22 X23 X31 X32 X33 X34

Document 1 Document 2 Document 3



Latent Dirichlet Allocation

Generative Process

For each topic k € {1,..., K }:

¢, ~ Dir(3) [draw distribution over words]
For each document m € {1,..., M}
0,, ~ Dir(a) [draw distribution over topics’
Foreach wordn € {1,..., N,,,}
Zmn ~ Mult(1, 0,,) [draw topic assignment]
Tmn ~ @, [draw word]

Example corpus

X1 X12 X; 3 X1 X5 X23 X31 X32 X33 X34

Document 1 Document 2 Document 3




Latent Dirichlet Allocation

* Plate Diagram

®-OOO

®




Latent Dirichlet Allocation

* Plate Diagram

Dirichlet @
Document-specific
topic distribution @ Topic Dirichlet
Topic assignment
Observed word @< @
N, K
M




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

e

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topicis defined as a Multinomial distribution
over the vocabulary, parameterized by ¢,

59



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

aoiaa.

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topicis defined as a Multinomial distribution
over the vocabulary, parameterized by ¢,
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

- T
i i i

* Atopicis visualized as its high probability
words.

61



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

- T
i i i

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(8)

C T

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

ﬁi {Japan}

Dirichlet(a)

/

|
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

ﬁi {Japan}

Dirichlet(a)

/

-0 Ii,.l. i

The 54/40'boundary dispute is

65




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

ﬁ T
e
{Japan}

Dirichlet(a)
>0 li_.l. |

/
The 54/40'boundary dispute is

still unresolved, and|Canadian
and U8 [

66



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)

ﬁi {Japan}

Dmchlet(a) /

The 54/40' _ dispute is

still unresolved, and
and US

/

67




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(6)
ﬁ T
{Japan}
Dirichlet(a)
-

0,= I
[ |
The 54/40'boundary dispute is

still unresolved, and|Canadian
2 S CGRSUGURRAvessels

regularly if infrequently detain
each other's fish boats in the

disputed waters off-...

68



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(8)

— T
{Japan}

Dirichlet(a)

0,=

—> e3=

The 54/40'boundary dispute is

still unresolved, and|Canadian
2 S CGRSUGURRAvessels

regularly if infrequently detain
each other's fish boats in the

disputed waters off-...

In the year before

-
Inished with 38 )

Following his arrival, the

-finished...

The- - staff

again is having a fine

exhibition- Four

shutouts, low team ERA,
(Well, I haven't gotten any

69






(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(8)

— T
{Japan}

Dirichlet(a)

0,=

—> e3=

The 54/40'boundary dispute is

still unresolved, and|Canadian
2 S CGRSUGURRAvessels

regularly if infrequently detain
each other's fish boats in the

disputed waters off-...

In the year before

-
Inished with 38 )

Following his arrival, the

-finished...

The- - staff

again is having a fine

exhibition- Four

shutouts, low team ERA,
(Well, I haven't gotten any
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet( )

T K

Dirichlet( )

Sos

1=

0,=

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon...

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished...

The Orioles' itching staff
again is having a fine
exhibition season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball...

72




Latent Dirichlet Allocation

Questions:

* |s this a believable story for the generation
of a corpus of documents?

* Why might it work well anyway?



Latent Dirichlet Allocation

Why does LDA “work’”?

e LDA trades off two goals.

@ For each document, allocate its words to as few topics as possible.
@ For each topic, assign high probability to as few terms as possible.

e These goals are at odds.

e Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

o Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

e Trading off these goals finds groups of tightly co-occurring words.

Slide from David Blei, MLSS 2012



Latent Dirichlet Allocation

How does this relate to my other favorite model
for capturing low-dimensional representations
of a corpus?

* Builds on latent semantic analysis (Deerwester
et al., 1990; Hofmann, 1999)

* Itis a mixed-membership model (Erosheva,
2004).

e |t relates to PCA and matrix factorization
(Jakulin and Buntine, 2002)

* Was independently invented for genetics
(Pritchard et al., 2000)

Slide from David Blei, MLSS 2012



Outline

* Contrast of methods for Inference / Learning
— Exactinference
— EM
— Monte Carlo EM
— Gibbs sampler
— Collapsed Gibbs sampler



Unsupervised Learning

Three learning paradigms:
1. Maximum likelihood
arg m@axp(X\@)
1.  Maximum a posteriori (MAP)
arg max p(60]X) o p(X|0)p(9)
1. Bayesian approach

Estimate the posterior:

p(0|X)= ...



LDA Inference

 Standard EM (Maximum Likelihood)

Document-specific
topic distribution

Topic assignment

Observed word




LDA Inference

 Standard EM (MAP)

©)

Dirichlet

Document-specific

topic distribution Dirichlet

Topic assignment

Observed word




LDA Inference

e Monte Carlo EM

Dirichlet

Document-specific

topic distribution Dirichlet

Topic assignment

Observed word




LDA Inference

* Bayesian Approach

Dirichlet

Document-specific

topic distribution Dirichlet

Topic assignment

Observed word




LDA Inference

* Bayesian Approach

Dirichlet

Document-specific

topic distribution Dirichlet

Intractable

Observed word




Exact Inference in LDA

* Exactly computing the posterior is intractable in
LDA

— Junction tree algorithm: exact inference in general
graphical models

1. “moralization” converts directed to undirected
2. ‘“triangulation” breaks 4-cycles by adding edges
3. Cliques arranged into a junction tree

— Time complexity is exponential in size of cliques
— LDA cliques will be large (at least O(# topics)), so
complexity is O(27 topics)
* Exact MAP inference in LDA is NP-hard for a
large number of topics (Sontag & Roy, 2011)



LDA Inference

* Explicit Gibbs Sampler

Dirichlet @

Document-specific @
topic distribution Topic Dirichlet

Topic assignment

Observed word < @;\

&




LDA Inference

* Collapsed Gibbs Sampler

Dirichlet

Document-specific

topic distribution Dirichlet

Topic assignment

Observed word

®




