Intro. to Topic Modeling (cont'd) + Factor Analysis

Kayhan Batmanghelich

Topic Modeling

Motivation:

Suppose you're given a massive corpora and asked to carry out the following tasks

- Organize the documents into thematic categories
- Describe the evolution of those categories over time
- Enable a domain expert to analyze and understand the content
- Find **relationships** between the categories
- Understand how **authorship** influences the content

Mixture vs. Admixture (LDA)

Diagrams from Wallach, JHU 2011, slides

Generative Process

• Example corpus

Generative Process

Example corpus

the	he	is	
X ₁₁	X ₁₂	X ₁₃	

the	and	the
X ₂₁	X ₂₂	X ₂₃

she	she	is	is
X ₃₁	X ₃₂	X ₃₃	X ₃₄

Document 1

Document 2

Document 3

 Plate Diagram Des die (nord) $|x_{mn}|$

Plate Diagram

- The generative story begins with only a Dirichlet prior over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by $\phi_{\mathbf{k}}$

- The **generative story** begins with only a **Dirichlet prior** over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by $\phi_{\mathbf{k}}$

 A topic is visualized as its high probability words.

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

Dirichlet()

$$\phi_2 =$$

$$\phi_3 =$$

$$\phi_4 =$$

$$\phi_5 =$$

$$\phi_6 =$$

The 54/40' boundary dispute is still unresolved, and Canadian and US Coast Guard vessels regularly if infrequently detain each other's fish boats in the disputed waters off Dixon...

$$\rightarrow$$
 θ_2 =

In the year before Lemieux came, Pittsburgh finished with 38 points. Following his arrival, the Pens finished...

The Orioles' itching staff again is having a fine exhibition season. Four shutouts, low team ERA, (Well, I haven't gotten any baseball...

Questions:

• Is this a believable story for the generation of a corpus of documents?

Why might it work well anyway?

Why does LDA "work"?

- LDA trades off two goals.
 - 1 For each document, allocate its words to as few topics as possible. \rightarrow
 - 2 For each topic, assign high probability to as few terms as possible.
- These goals are at odds.
 - Putting a document in a single topic makes #2 hard:
 All of its words must have probability under that topic.
 - Putting very few words in each topic makes #1 hard:
 To cover a document's words, it must assign many topics to it.
- Trading off these goals finds groups of tightly co-occurring words.

How does this relate to my other favorite model for capturing low-dimensional representations of a corpus?

- Builds on latent semantic analysis (Deerwester et al., 1990; Hofmann, 1999)
- It is a mixed-membership model (Erosheva, 2004).
- It relates to PCA and matrix factorization (Jakulin and Buntine, 2002)
- Was independently invented for genetics (Pritchard et al., 2000)

Case Study: Modeling Join Imaging and Genetic data

Imaging and Genetic Data

Subject s

Bag of Words Model

Subject s

Visual Words (I_{sn})

$$G_s = \{\ell_1, \ell_3, \ell_3, \ell_5, \ell_5\}$$
Genetic Words
(Genetic variants)

Analogy: Subject as a Document

Topics (Image Patterns):

Pattern 1

Imaging – Genetic Pair **Topics Signatures 0.4 0**.4 0.2 β_2 (μ_2, Σ_2) 0.30.30.3 β_3 (μ_3, Σ_3)

Probabilistic Model

$$(\widetilde{\mu_2,\Sigma_2}),\widetilde{eta}_2$$

$$(\mu_K, \Sigma_K), \beta_K$$

Subject

$$I_{sm} \sim \mathcal{N}(\cdot; \mu_3, \Sigma_3)$$

Graphical Model

Inference

$$(\mu_1, \Sigma_1), \beta_1$$
 $(\mu_2, \Sigma_2), \beta_2$ $(\mu_3, \Sigma_3), \beta_3$ • • • $(\mu_K, \Sigma_K), \beta_K$

Topic pairs

$$\pi = \{ lpha, \omega, \eta^I, \eta^G \}$$
 (hyper-parameters)

Factor Analysis

A road map to more complex dynamic models

Recall multivariate Gaussian

Multivariate Gaussian density:

$$p(\mathbf{x} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

A joint Gaussian:

$$p(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} | \mu, \Sigma) = \mathcal{H} \left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} | \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$$

- How to write down $p(\mathbf{x}_1)$, $p(\mathbf{x}_1|\mathbf{x}_2)$ or $p(\mathbf{x}_2|\mathbf{x}_1)$ using the block elements in μ and Σ ?
 - Formulas to remember:

$$\begin{split} \rho(\mathbf{x}_2) &= \mathcal{N} \quad (\mathbf{x}_2 \mid \mathbf{m}_2^m, \mathbf{V}_2^m) \\ \mathbf{m}_2^m &= \mu_2 \\ \mathbf{V}_2^m &= \Sigma_{22} \end{split} \qquad \begin{aligned} \rho(\mathbf{x}_1 \mid \mathbf{x}_2) &= \mathcal{N} \quad (\mathbf{x}_1 \mid \mathbf{m}_{1|2}, \mathbf{V}_{1|2}) \\ \mathbf{m}_{1|2} &= \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_2 - \mu_2) \\ \mathbf{V}_{1|2} &= \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \end{aligned}$$

Review: The matrix inverse lemma

Consider a block-partitioned matrix:

• First we diagonalize M

$$\begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} \begin{bmatrix} E-FH^{-1}G & 0 \\ 0 & H \end{bmatrix}$$

- Schur complement: $M/H = E-FH^{-1}G$
- Then we inverse, using this formula: $XYZ = W \implies Y^{-1} = ZW^{-1}X$

$$M^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} \begin{bmatrix} (M/H)^{-1} & 0 \\ 0 & H^{-1} \end{bmatrix} \begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix}$$

$$= \begin{bmatrix} (M/H)^{-1} & -(M/H)^{-1}FH^{-1} \\ -H^{-1}G(M/H)^{-1} & H^{-1} + H^{-1}G(M/H)^{-1}FH^{-1} \end{bmatrix} = \begin{bmatrix} E^{-1} + E^{-1}F(M/E)^{-1}GE^{-1} & -E^{-1}F(M/E)^{-1} \\ -(M/E)^{-1}GE^{-1} & (M/E)^{-1} \end{bmatrix}$$

Matrix inverse lemma

$$(E-FH^{-1}G)^{-1} = E^{-1} + E^{-1}F(H-GE^{-1}F)^{-1}GE^{-1}$$

Review: Some matrix algebra

Trace and derivatives

$$\operatorname{tr}[A]^{\operatorname{def}} = \sum_{i} a_{ii}$$

Cyclical permutations

$$tr[ABC] = tr[CAB] = tr[BCA]$$

Derivatives

$$\frac{\partial}{\partial A} \operatorname{tr}[BA] = B^{T}$$

$$\frac{\partial}{\partial A} \operatorname{tr}[x^{T} A x] = \frac{\partial}{\partial A} \operatorname{tr}[x x^{T} A] = x x^{T}$$

• Determinants and derivatives

$$\frac{\partial}{\partial A} \log |A| = A^{-1}$$

Factor analysis

An unsupervised linear regression mode

$$p(\mathbf{x}) = \mathcal{H} (\mathbf{x}; \mathbf{0}, I)$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{H} (\mathbf{y}; \mu + \Lambda \mathbf{x}|\Psi)$$

where Λ is called a factor loading matrix, and Ψ is diagonal.

Geometric interpretation

• To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.

Marginal data distribution

- A marginal Gaussian (e.g., p(x)) times a conditional Gaussian (e.g., p(y|x)) is a joint Gaussian
- Any marginal (e.g., p(y) of a joint Gaussian (e.g., p(x,y)) is also a Gaussian
 - Since the marginal is Gaussian, we can determine it by just computing its mean and variance. (Assume noise uncorrelated with data.)

$$E[\mathbf{Y}] = E[\mu + \Lambda \mathbf{X} + \mathbf{W}] \quad \text{where } \mathbf{W} \sim \mathcal{H} \quad (0, \Psi)$$
$$= \mu + \Lambda E[\mathbf{X}] + E[\mathbf{W}]$$
$$= \mu + 0 + 0 = \mu$$

FA = Constrained-Covariance Gaussian

• Marginal density for factor analysis (y is p-dim, x is k-dim):

$$p(\mathbf{y} \mid \theta) = \mathcal{U}(\mathbf{y}; \mu, \Lambda \Lambda^T + \Psi)$$

 So the effective covariance is the low-rank outer product of two long skinny matrices plus a diagonal matrix:

• In other words, factor analysis is just a constrained Gaussian model (number of free params of the covariance is limited). (If Ψ were not diagonal then we could model any Gaussian and it would be pointless.)

FA joint distribution

Model

$$\rho(\mathbf{x}) = \mathcal{H} (\mathbf{x}; \mathbf{0}, I)$$

$$\rho(\mathbf{y}|\mathbf{x}) = \mathcal{H} (\mathbf{y}; \mu + \Lambda \mathbf{x}, \Psi)$$

Covariance between x and y

$$Cov[\mathbf{X}, \mathbf{Y}] = E[(\mathbf{X} - \mathbf{0})(\mathbf{Y} - \mu)^{T}] = E[\mathbf{X}(\mu + \Lambda \mathbf{X} + \mathbf{W} - \mu)^{T}]$$
$$= E[\mathbf{X}\mathbf{X}^{T}\Lambda^{T} + \mathbf{X}\mathbf{W}^{T}]$$
$$= \Lambda^{T}$$

• Hence the joint distribution of **x** and **y**:

$$p(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}) = \mathcal{H} \left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \middle| \begin{bmatrix} \mathbf{0} \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda\Lambda^T + \Psi \end{bmatrix} \right)$$

Assume noise is uncorrelated with data or latent variables.

Inference in Factor Analysis

• Apply the Gaussian conditioning formulas to the joint distribution we derived above, where $\Sigma_{11} = I$

$$\Sigma_{12} = \Sigma_{12}^{T} = \Lambda^{T}$$

$$\Sigma_{22} = (\Lambda \Lambda^{T} + \Psi)$$

$$\Sigma_{3}$$

$$\Sigma_{4} = (\Lambda \Lambda^{T} + \Psi)$$

$$\Sigma_{4} = (\Lambda \Lambda^{T} + \Psi)$$

we can now derive the posterior of the latent variable ${\bf x}$ given

observation y, $p(x|y) = \mathcal{U}(x|m_{1|2}, V_{1|2})$, where

$$\mathbf{m}_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{y} - \mu_2) \qquad \mathbf{V}_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

$$= \Lambda^T (\Lambda \Lambda^T + \Psi)^{-1} (\mathbf{y} - \mu) \qquad = I - \Lambda^T (\Lambda \Lambda^T) + \Psi$$

Applying the matrix inversion lemma

$$V_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

$$= I - \Lambda^{T} \left(\Lambda \Lambda^{T} + \Psi \right)^{-1} \Lambda$$

$$= E^{-1} + E^{-1} F \left(H - G E^{-1} F \right)^{-1} G E^{-1}$$

• Here we only need to invert a matrix of size
$$|\mathbf{x}| \times |\mathbf{x}|$$
, instead of $|\mathbf{y}| \times |\mathbf{y}|$.

© Eric Xing @ CMU, 2005-201

Geometric interpretation: inference is linear projection

- The posterior is: $p(\mathbf{x}|\mathbf{y}) = \mathcal{N} \ (\mathbf{x}; \mathbf{m}_{1|2}, \mathbf{V}_{1|2})$ $\mathbf{m}_{1|2} = \mathbf{V}_{1|2} \Lambda^T \Psi^{-1} (\mathbf{y} \mu) \qquad \mathbf{V}_{1|2} = \left(I + \Lambda^T \Psi^{-1} \Lambda\right)^{-1}$
- Posterior covariance does not depend on observed data y!
- Computing the posterior mean is just a linear operation:

Learning FA

• Now, assume that we are given $\{y_n\}$ (the observation on high-dimensional data) only

- We have derived how to estimate x_n from P(X|Y)
- How can we learning the model?
 - Loading matrix Λ
 - Manifold center μ
 - Variance Ψ

FM for Factor Analysis Paid TKN (xi, Mr, 5x)

ncomplete data log likelihood function (marginal density of y)

$$\ell(\theta, D) = -\frac{N}{2} \log |\Lambda \Lambda^{T} + \Psi| - \frac{1}{2} \sum_{n} (y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} (y_{n} - \mu) \rightarrow \text{trace}(\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{-1} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} (\Lambda \Lambda^{T} + \Psi)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S = \sum_{n} (y_{n} - \mu)(y_{n} - \mu)^{T} S, \quad \text{where } S$$

- Estimating μ is trivial: $\hat{\mu}^{ML} = \frac{1}{N} \sum_{n} y_{n}$
- ullet Parameters Λ and Ψ are coupled nonlinearly in log-likelihood
- Complete log likelihood

$$\ell_{\varepsilon}(\theta, D) = \sum_{n} \log p(x_{n}, y_{n}) = \sum_{n} \log p(x_{n}) + \log p(y_{n} \mid x_{n})$$

$$= -\frac{N}{2} \log |I| - \frac{1}{2} \sum_{n} x_{n}^{T} x_{n} - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} (y_{n} - \Lambda x_{n})^{T} \Psi^{-1}(y_{n} - \Lambda x_{n})$$

$$= -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} \operatorname{tr} \left[x_{n}^{T} x_{n}^{T} \right] - \frac{N}{2} \operatorname{tr} \left[S \Psi^{-1} \right], \quad \text{where } S = \frac{1}{N} \sum_{n} (y_{n} - \Lambda x_{n})(y_{n} - \Lambda x_{n})^{T}$$

$$= -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} \operatorname{tr} \left[x_{n}^{T} x_{n}^{T} \right] - \frac{N}{2} \operatorname{tr} \left[S \Psi^{-1} \right], \quad \text{where } S = \frac{1}{N} \sum_{n} (y_{n} - \Lambda x_{n})(y_{n} - \Lambda x_{n})^{T}$$

E-step for Factor Analysis

Compute

$$\left\langle \ell_{\epsilon}\left(heta,\mathcal{D}
ight)
ight
angle _{p\left(imes\left| imes
ight)
ight.}$$

$$\langle \ell_{e}(\theta, D) \rangle = -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} \operatorname{tr} \left[\langle X_{n} X_{n}^{T} \rangle \right] - \frac{N}{2} \operatorname{tr} \left[\langle S \rangle \Psi^{-1} \right]$$

$$\langle S \rangle = \frac{1}{N} \sum_{n} (y_{n} y_{n}^{T} - y_{n} \langle X_{n}^{T} \rangle \Lambda^{T} - \Lambda \langle X_{n}^{T} \rangle y_{n}^{T} + \Lambda \langle X_{n} X_{n}^{T} \rangle \Lambda^{T})$$

$$\langle X_{n} \rangle = E[X_{n} | y_{n}]$$

$$\langle \mathbf{X}_{n} \mathbf{X}_{n}^{T} \rangle = Var[\mathbf{X}_{n} \mid \mathbf{y}_{n}] + E[\mathbf{X}_{n} \mid \mathbf{y}_{n}] E[\mathbf{X}_{n} \mid \mathbf{y}_{n}]^{T}$$

Recall that we have derived:

$$\mathbf{V}_{1|2} = \left(I + \Lambda^T \Psi^{-1} \Lambda\right)^{-1} \qquad \mathbf{m}_{1|2} = \mathbf{V}_{1|2} \Lambda^T \Psi^{-1} (\mathbf{y} - \mu)$$

M-step for Factor Analysis

- Take the derivates of the expected complete log likelihood wrt. parameters.
 - Using the trace and determinant derivative rules:

$$\frac{\partial}{\partial \Psi^{-1}} \langle \ell_{\epsilon} \rangle = \frac{\partial}{\partial \Psi^{-1}} \left(-\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} \text{tr} \left[\langle X_{n} X_{n}^{T} \rangle \right] - \frac{N}{2} \text{tr} \left[\langle S \rangle \Psi^{-1} \right] \right)$$

$$= \frac{N}{2} \Psi - \frac{N}{2} \langle S \rangle \qquad \Longrightarrow \qquad \Psi^{t+1} = \langle S \rangle$$

$$\frac{\partial}{\partial \Lambda} \langle \ell_{\epsilon} \rangle = \frac{\partial}{\partial \Lambda} \left(-\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_{n} \text{tr} \left[\langle X_{n} X_{n}^{T} \rangle \right] - \frac{N}{2} \text{tr} \left[\langle S \rangle \Psi^{-1} \right] \right) = -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \langle S \rangle$$

$$= -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \left(\frac{1}{N} \sum_{n} (y_{n} y_{n}^{T} - y_{n} \langle X_{n}^{T} \rangle \Lambda^{T} - \Lambda \langle X_{n}^{T} \rangle y_{n}^{T} + \Lambda \langle X_{n} X_{n}^{T} \rangle \Lambda^{T}) \right)$$

$$= \Psi^{-1} \sum_{n} y_{n} \langle X_{n}^{T} \rangle - \Psi^{-1} \Lambda \sum_{n} \langle X_{n} X_{n}^{T} \rangle$$

$$\Lambda^{t+1} = \left(\sum_{n} y_{n} \langle X_{n}^{T} \rangle \right) \left(\sum_{n} \langle X_{n} X_{n}^{T} \rangle \right)^{-1} .$$

$$y = \Delta x + \mu$$

Model Invariance and Identifiability

- There is *degeneracy* in the FA model.
- Since Λ only appears as outer product $\Lambda\Lambda^T$, the model is invariant to rotation and axis flips of the latent space.
- We can replace Λ with ΛQ for any orthonormal matrix Q and the model remains the same: $(\Lambda Q)(\Lambda Q)^T = \Lambda(QQ^T)\Lambda^T = \Lambda\Lambda^T$.
- This means that there is no "one best" setting of the parameters. An infinite number of parameters all give the ML score!
- Such models are called un-identifiable since two people both fitting ML parameters to the identical data will not be guaranteed to identify the same parameters.

A road map to more complex dynamic models

