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Causal Discovery from Data:
Examples

| m%\s March, 2014 RESEARCH ARTICLES

Large-Scale Psychological soarch did ot el b, T
Differences Within China Explained by = | .

) ) X: rice/wheat agriculture;
Rice Versus Wheat Agriculture obiaie.

T. Talhelm,** X. Zhang,*? S. Oishi,* C. Shimin,* D. Duan,” X. Lan,” S. Kitayama® Z: Climate etcC.:

Cross-cultural psychologists have mostly contrasted East Asia with the West. However,
this study shows that there are major psychological differences within China. We
propose that a history of farming rice makes cultures more interdependent, whereas
farming wheat makes cultures more independent, and these agricultural legacies
continue to affect people in the modern world. We tested 1162 Han Chinese participants
in six sites and found that rice- growmg southern China is more interdependent and
holistic-thinking than the wheat-growing north. To control for confounds like climate,
we tested people from neighboring counties along the rice-wheat border and found Under what conditions
differences that were just as large. We also find that modernization and pathogen
prevalence theories do not fit the data. can we say

XHY;

XWY | Z.

ver the past 20 years, psychologists have more insular and collectivistic (6). Studies
ncataloged a long list of differences be- have found that historical pathogen prevalence



Quick Look at Supervised Learning...

A A A

> > >

Given training set S = {(x1, y1), ..., (Xn, Yn)}

H : hypothesis space, a space of functions f/: X—Y.

Learning algorithm looks at S and selects from H a function f§ : x —>y

such that f5(x) = y in a predictive way or fs generalizes well (go
beyond data!)

What knowledge helps 1in causal discovery?



Outline

® Causal discovery

® (Constraint-based approach
® Score-based approach
® [unctional causal model-based approach

® Lxtensions

® (lausality-based learning

® Domain adaptation (transter learning)




(Local) Causal Markov
Condition

chat”
slippery ground

yellow finger

® FEach variable is independent from its non-descendants given its
parents

falling down




Is Local Causal Markov
Condition Enough?

® (Can we see whether two arbitrary variables, X and Y, are
conditionally independent given an arbitrary set of variables, Z ?

Born an
ven Dav
Attention
Disorder




D-Separation Tells
Conditional Independence

® Jf every path from a node in X to a node in Y is d-separated by Z,
then X and Y are always conditionally independent given Z

® d: directional... You will see why

Born an
ven Dav

Attention
Disorder




D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in X to a node in Y is blocked given Z.

® A path p is blocked by a set of nodes Z if

® ) contains a chain 7/—m—j or a common cause 7 <——>7 such that
the middle node 7 is in Z, or

® / contains a collider 7—m<—j such that the middle node 7 is in not
Z. and no descendant of 7z is in Z

X—»R—pS —> T ¢—Ue—V—pY
X—»R—pS—»T «—Ue—V—>pY l l l

X andY d-separated by {R,V} W P Q
S and U d-separated by {R,V}? X andY d-separated by {R, P}?



D-Separation: Intuition

Given Z.. Z is fixed, or turned off !



LLocal & Global Markov

Conditions

® l.ocal Markov condition:

® In a DAG, a variable X is independent of all its non-
descendants given its parents

® (Global Markov condition:

® Given a DAG, let X and Y be two variables and Z be a set

of variables that does not contain X or Y. If Z d-separates
X and Y, then X1Y|Z.

® Actually equivalent on DAGs!



Causal Sufhiciency

® A set of random variables V¥ is causally
sufficient if ¥ contains every direct cause 7

(with respect to V) of any pair of / \

variables in V

® V= {XYZ}: causally sufhicient
® V= {X7Y}: causally insufficient

® Methods exist in causally insufficient
cases, ¢.g., FCI (Chapter 6 of the SGS
book)

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

coldwimer ) <w>

slippery ground

Why so interesting?



Causal Markov Condition

cold winter SNOW

slippery ground

l

falling down




We can See CI Relations

from DAGs...

. Born an
(Peer Pressure
ven Day

® |.ocal Markov condition
® (Global Markov condition

® d-separation implies conditional independence:

P(V), where V denotes the set of variables, obeys the global Markov con-

dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Zin g — X 1 Y |Z.




Going from CI to Graph?

X and Y are d-separated by Zin§ — X 1L Y|Z.

® (Contrapositive:
® (Conditional dependence implies d-connection
® What if variables are conditionally independent?

® (Can we recover the property of the underlying graph from
CI relations with Markov condition?

® Arbitrary P(V) would satisfy the global Markov condition
according to G in which there is an edge between each pair of
variables: trivial !

® Under what assumptions can we have CI = d-separation?



Faithfulness Assumption

® One may find independence between health condition & risk of
mortality and between swimming skills & risk of drowning

health ; risk of I
condition b mortahty care essness

healthy ! risk of

e E.g. if they are linear-Gaussian and a=-bc, then health_condition
L risk_mortality, which cannot by seen from the graph!

e Faithfulness assumption eliminates this possibility!



Causal Structure vs. Statistical Independence
(SGS, et al.)

Causal Markov condition: each variable is ind. of its non-
descendants conditional on its parents

causal structure Statistical
(causal graph) independence(s)
Y>> X7

Y--X--Z1

Faithfulness: all observed (conditional) independencies
are entailed in the causal graph




Constraint-Based Search?

® First, can we find the skeleton of the
causal structure? If yes, how?

® Second, can we determine the causal
direction?
How!



Begin with:

Example I

Step I: finding skeleton

Independcies

X1 1l X2

x11L x4| {X3} Step 11 finding v-structure and

x2 1L x4| {X3} doing orientation propagation




The PC Algorithm: Big Picture

- Make use of conditional independence relations




Constraint-Based Causal Discovery

® (Conditional) independence constraints
= candidate causal structures

® Relies on causal Markov condition &
faithfulness assumption

-------------------

® PC algorithm (Spirtes & Glymour, 1991) [yizix] |
® Step 1: X and Y are adjacent ift they are R -
dependent conditional on every subset of the lmfer ring

remaining variables (SGS, 1990)

Y—X—Z| 3 possibilities:
® Step 2: Orientation propagation

Codhd

® Markov equivalence class, with pattern
Y—X—7/

® same adjacencies; — if all agree on Y 7/ - v

orientation; — if disagree




P ( : A.) Form the complete undirected graph C on the vertex set V.
B.)

n=0.
([ ]
Algorithm ==
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adjacencies(C,X)\{Y'} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if

Test fOI’ (conditional) X and Y are d-separated given S delete edge X - Y from C and
independence with an record S in Sepset(X,Y) and Sepset(Y,X);
increased cardin Glity Of the until all ordered pairs of adjacent variables X and Y such that

Ce Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
conditioning set L -

subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C, X )\{Y} is

of cardinality less than n.
Findin g V- ‘ ‘ C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
structures adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X -> Y <- Zif




Example 1: College Plans

Sewell and Shah (1968) studied five variables from a sample of
10,318 Wisconsin high school seniors.

SEX [male = 0, female = 1]
10 = Intelligence Quotient [lowest = 0, highest = 3]
CP = college plans [yes =0, no = 1]

PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]




Example II: Causal analysis of

archeology data
Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from different locations
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Example II: Result

Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from different locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® PC + kernel-based conditional ind. test (Zhang et al., 2011) seems to
be a good choice

1. gender (1D) —> 2. cranial size (1D) 3. diet (5D)

reported

6. population history

8. cranial shape

repr esented by \ differentiation
geodistance (3D) 7. climate (6D) (255D)
5. level of attrition 2D) 4
paramasticatory
behavior (sD)




Example II: Result

Thanks to collaborator Marlijn Noback

® § variables of 250 skeletons collected from different locations

® Different dimensions (from 1 to 255) with nonlinear dependence

® PC + kernel-based conditional ind. test (Zhang et al., 2011) seems to

be a good choice

1. gender (1D)|—> 2. cranial size (1D)

reported

6. population history
represented by \

3. diet (sD) )(

>

geodistance (3D)

7. climate (6D)

5. level of attrition 2D)

ey

8. cranial shape
differentiation

(255D)

/

4.

paramasticatory
behavior (sD)




How about This Case?

X1 1 Xo;
X1 1L X4 Xs3;
Xo X4 | X3.

What is corresponding causal structure? Possible to
have confounders behind X3 and X4?

N :-)



How about This Case?

X1 AL Xs;
X1 L Xy
Xo I Xs.
e I
X1 — Xo Xg4—X3 L. a latent variable

- Patterns: a description of a class of causal processes described by various
DAGs.

- In the presence of latent variables, the causal process over measured
variables O is not necessarily a DAG. How can we represent
(independence) equivalence classes over O ?



FCI (Fast Causal Inference)
Allows Confounders

Assume the distribution over measured variables O is the marginal of a

distribution satisfying the Markov and faithfulness conditions for the
true graph

Results represented by PAGs

N
X1 — X0 X4—X3

What's FCl'’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997



Outline

® Causal discovery

® (onstraint-based approach
® Score-based approach
® [unctional causal model-based approach

® Lxtensions

® (lausality-based learning

® Domain adaptation (transter learning)




Key Issues

® \What score to use?

® Bayesian scoring: Allows informative prior
probabilities of causal structure & parameters

® Non-Bayesian scoring
® How to traverse the search space of the graph?
® DAGs? Equivalence classes?

® How to do optimization?



GES (Greedy Equivalence Search):

Score Function

® Assumptions: The score is
® score equivalent (i.e., assigning the same score to equivalent DAGs)

® |ocally consistent: score of a DAG increases (decreases) when adding
any edge that eliminates a false (true) independence constraint

® decomposable: Score(G,D) =)~ Score(X;, Paj)

1=1
A d
® Eg,BIC: S5(9,D)=logp(D|0,G") — ; logm

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002



GES: Search Procedure

® Performs forward (addition) / backward (deletion) equivalence search
through the space of DAG equivalence classes

® Forward Greedy Search (FGS)

Start from some (sparse) pattern (usually the empty graph)

Evaluate all possible patterns with one more adjacency that entail
strictly fewer CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum

® Backward Greedy Search (BGY)

Start from the output of the Forward Stage

Evaluate all possible patterns with one fewer adjacency that entail
strictly more CI statements than the current pattern

Move to the one that increases the score most

Iterate until a local maximum



GES °\

Suppose data were generated by

e/
- NN

(1) ° 2) °

-




GES

Suppose data were generated by

Imagine the GES procedure...



Constraint-based Causal Discovery:
Advantages and Limitations

® Nonparametric; widely applicable given reliable conditional
independence tests

® Recovering {causal relations} from {conditional independences}: bounded
by the equivalence class

® Directly characterize and recover cause-effect relationships?

® additional weak and reasonable assumptions may be needed

X1Z|Y

e Instead, try to directly identify local
causal structures with functional causal
models/structural equation models




Outline

® Causal discovery

® (onstraint-based approach
® Score-based approach
® Functional causal model-based approach

® Lxtensions

® (lausality-based learning

® Domain adaptation (transter learning)




Fully Identifiable Causal

Structure? Two-Variable Case.

® Structural equation model /
functional causal model

Y =f(X,FE), where £ I X

® Related to this type of P(Y|X)
“independence”: P(X) — X—\" Y
® Start with the linear case

Y =aX + E, where £ 1 X

® Determine causal direction in the
two-variable case? Identifiability!




(Conditional) Independence

o X1Yift p(XY) = p(X)p(Y) -
e or p(X]Y) = P(X): Y not informative to X Ry

o XLY | Ziff p(X,Y1Z) = p(X|Z)p(Y12)
o or, p(X|Y,Z) = p(X]|Z): given Z, Y not f@

informative to X

e Divide & conquer, remove irrelevant info... %%

e By construction, regression residual 1s %

uncorrelated (but not necessarily
independent !) from the predictor

Uncorrelatedness: E[XY] = E[X]E[Y]




Three distribusions with zero mean and unit variance

(saussian vs. Non-(aussian
Distributions

0.8

0.77

0.6}

0.5}

0.41

0.3r1

0.21

0.1

= = = (Gaussian

= | aplacian
m | JNifOrm

Laplacian Guassian

Uniform

50 100 150 200 250 300 350 400 450 500
50 100 150 200 250 300 350 400 450 500
0 50 100 150 200 250 300 350 400 450 500



Causal Asymmetry the Linear

Case: Illustration
Data generated by Y =aX + E (1.e., X —Y):

Linear regression Y = aX + EY
Y

Linear regression X = bY + Ex

Gaussian case

Uniform case




Super-(Gaussian Case

Data generated by Y =aX + £ (X —Y):

A

.Nv'.




More Generally, LINGAM Model

e Linear, non-Gaussian, acyclic causal model (LINGAM)
(Shimizu et al., 20006):

X;i= Y  b;X;+E or X=BX+E

9: parents of ¢

e Disturbances (errors) E; are non-Gaussian (or at most
one is Gaussian) and mutually independent

e Example:
X2 — E27 -
X5 = 0.5X5 + Es, E)

X1 =—-0.2X5+0.3X35+ Ej.

Shimizu et al. (2006).A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7:2003-2030.



Identifiability of Causal

Direction in the Linear Case

® Supported by the “independent component analysis”
theory

® Jater will consider a more general nonlinear setting,
and you’ll see the linear-GGassian case is one of the few
non-identifiable situations



Independent Component Analysis

— — — — —
—
—

,,,,,,, estimate T T~
SO S -
_. .\',  . ' r‘ ! "  - ‘ femmeem | ; \ S * ) / / o
s Do A | A : : 1
; ‘Srlﬂ--—.-»é L---, Xm | — > Yn
- S T o =\ Y T \
L 7 L L mixing N B de-mixing T
-' independent observed ~ output:as
. sources signals independent as
Lvssssssssssessssssssssssssssssssssssssssssssssssssssssssssssiss ; ICA system possible
unknown mixing system
X=A-S Y=W-X

5 3 11 -03 .. Wl (20?7 7 7 ] s
8 -7 3 5 7|l 22 2 L 5y

Shs

® Assumptions in ICA Then A can be estimated up to

column scale and permutation

® . 4 > . . .
At most one of §; is GGaussian indeterminacies

® #Source <= # Sensor, and A is of full column rank
Hyvdrinen et al., Independent Component Analysis, 200 |



A Dem() Of SIGNALS JOINT DENSITY

the ICA e+
| ] B
Procedure WW,WHW .
______________ _'r___.____.___
Input signals and density
SIGNALS JOINT DENSITY

bty

5
0
5
5[
UMWWWWMW
-5

Whitened signals and density




SIGNALS

A A A AR

Separated signals after 1 step of FastiCA

SIGNALS JOINT DENSITY

Separated signals after 3 steps of FastiCA



SIGNALS JOINT DENSITY

s
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(TR
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Q...u.\. . ".,?.!

.

™

Separated signals after 5 steps of FastiCA



LiNGAM Analysis by ICA

LINGAM:X; = Y  b;X;+E o X=BX+E= E=(I-B)X

7: parents of ¢

® B has special structure: acyclic relations

ICA: Y=WX

B can be seen from W by permutation’
and re-scaling

Faithfulness assumption avoided

Eg, B, T 1 0 0] [X,
Esl =1-05 1 0] |Xs
By |02 —03 1| |[X,
X2:E1

<< X3 =0.5X9+ E3
X1 =—-0.2Xo+0.3X3+ Es

|1. First permute the rows of W
/|to make all diagonal entries

non-zero, yielding W. }
2. Then divide each row of W

by its diagonal entry, giving W’
3.3 B=1-W'.

I

So we have the causal
relation:




Limitations of LINGAM

Confounders

Measurement noise

Feedbacks Y\
Selection bias X Y- >°

linear or nonlinear?

. . . 1000 3000 5000
Various nonlinearities N R T

® Nonlinear function with independent additive
noise

Sales pr

® Sensor / measurement distortion

® With heteroscedastic noise

® More general forms Finished square feet

Zhang et al,, Learning causality and causality-related learning, National Science Review, 2018



More General Functional

Causal Models



FCMs with Which Causal Direction is
Generally Identifiable

® Linear non-Gaussian acyclic causal model (Shimizu et
¢ T,
al., ‘06) sl

-
o Emile
Y=aX+E S

® Additive noise model (Hoyer et al., ’09; Zhang & e
Hyvirinen, ‘ogb) AT

Y=AX)+E £

® Post-nonlinear causal model (Zhang & Chen, zoyo6b; Y et
Zhang & Hyvirinen, ‘09a)

Y=/ (fi(X)+E )




Causal Asymmetry with Nonlinear
Additive Noise: Illustration

Y = fiX) +E with ELX

(Hoyer et al., 2009)



Post-Nonlinear (PNL) Causal Model

(Zhang & Chan, 2006; Zhang & Hyvirinen, ‘09a)

® Without prior knowledge, the assumed model is expected to be
® ocneral enough: adapt to approximate the true generating process

® identifiable: asymmetry in causes and effects

pa;: parents (causes) of x,

Xi=fi2(fi1(pai) + E)

fg,zi assumed- to be_ £, : not necessarily e; noise/disturbance:
continuous and invertible il independent from pa,

Ol the causes | distortion

® Special cases: linear models; nonlinear additive noise models;
multiplicative noise models: ¥ = X - E = exp (log(X) + log(E))
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Independence test results on y, and y, with different assumed causal relations

Data Set

r1 — ro assumed

ro — 11 assuined

Threshold (o = 0.01)

Statistic

Threshold (o = 0.01)

Statistic

2.3 x 1077

1.7 x 10~

22x 1077

6.5 x 10~
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¥ (estimate of 92)

Data Set 3
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Data Set 6-
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Identifiability in Two-variable Case:
Theoretical Results

l pa.: parents (causes) of x,

Xi=fi2(fi1 (P‘aiﬁ)“;-.@ i)

' e.: noise/disturbance: ™

— —

1,2+ assumed to be f. ;» not necessarily
~ continuous and mvertible | R e T

® '[wo-variable case: if X;—X>, then X>=f22( 21 (X1) + E>)
® [s the causal direction implied by the model unique?

® By a proof of contradiction

e Assume both X;—X> and X>—X; satisfy PNL model (i.e., both directions
admit independent noise)

® (One can then find all non-identifiable cases



Identifiability: A Mathematical Result

Notation
Theorem 1 t = .«/{1(«1'1)- 29 = f{l(«f-'z).
| h= f1og2, hi = g1 0 fa.
ASSume 2= f2(‘f1($1) T 62)' m(t1) = log pe, (t1), n2(e2) = log pe,

r1 = ga2(g1(xa) + €1).

Further suppose that involved densities and nonlinear functions are third-
order differentiable, and that p_, 1s unbounded,

For every pomnt satisfying 7," #'# 0, we have

11 " /1 12

17,01
~a i
.,}(l// I L (ll)ll) o 2,}}&/) LR — Il%/ YA 111/ 4 1))~ (h/// - ])/ )

/!
h' 15 15

Obtained by using the fact that the Hessian of the logarithm of the joint
density of independent variables 1s diagonal everywhere (Lin, 1998)

It 1s not obvious 1f this theorem holds 1n practice. ..



List of All Non-Identifiable Cases

1

logp,Y >c(cz0), |g

Log-mixed-linear-and- AS V —> —0 Or as V —» +0
exponennat

log p, = c1e2¥ + cav + ¢4

\Tll)l( 1: All situaty

not 1dentifiable.

oction 1S %e“em“y

Pe2 a\ d rc

data Were Remark

111 Ell.\() lill('ul'

. . 4
11 strictly monotonic, and A} —
), as 22 — +00 Or as 29 — —X

Gaussian \ . b f th
log-mix-lin-ex} o
: 2

ni two (\pm}ntl als L‘ﬂan m

|

11

[II || log-mix-lin-exp

IV || log-mix-lin-exp

V generalized mixture
Po X (€1€727 + cze™v)es




Outline

® Causal discovery

® (onstraint-based approach
® Score-based approach
® [unctional causal model-based approach

® Extensions

® (lausality-based learning

® Domain adaptation (transter learning)




Extension 1: Causality in Time Series

oo Xip] — X1t —— Xi+1

® Functional causal models in time series :.z : :
v v
: : : o Xop 1 — 3 X0, — 3 X
® Time-delayed causality + instantaneous =~~~ " - ar
relations
X, 1,t-1 Xl,t+1
® (Causal discovery from subsampled or .
temporally aggregated data o X rt1

® From partially observable time series

Zhang & Hyvdrinen, ECML 2009;

Hyvdrinen , Zhang et al., IMLR 2010;

Gong, Zhang, Scholkopf, Tao, Geigere, ICML 2015; UAI 201 7;
Geiger, Zhang, Gong, Janzing, Scholkopf, ICML 2015




Nonstationary/Heterogeneous Data and

Causality
® Ubiquity of nonstationary/heterogeneous data WN\
® Nonstationary time series (brain signals, climate "' ¥ ull
data...) e ke e e

® Multiple data sets under difterent observational |
or experimental conditions

® (Causal modeling and distribution shift heavily

coupled

® Benefit from nonstationarity/heterogeneity!



Extension 2: Causal Discovery from
Nonstationary/Heterogeneous Data

9(C)
SOROHOE D

® Method to determine changing causal
modules & estimate skeleton

® (Causal orientation determination
benefits from independent changes in
P(cause) and Pleffect | cause)

® How do the nonstationary modules Kernel nonstationary
change over time / across data sets? driving force estimation

® Detection of nonstationary confounders

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015

Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation
determination, [|CAl 2017



On tMRI Hippocampus

OWE
® Compared our method and original '}@
(e

constraint-based method on 10 data

sets
® FP rate reduced from 62.9% to 17.1% Anatomical connections

® Accuracy of direction determination is

85.7%



Extension 3: Gausal Discovery 1n the
Presence of Measurement Error

® 1o estimate (Qover variables X, from noisy
observations X, = X, + F..

® (Conditional independence/dependence relations
among Xdifferent from those among X,

® [llustration: Correlation(X;, X2) &

P 12

partial_correlation(X;, X3 | X2) "N¥ == 13

-
- -

~

o 2 4 6 8 10
v = Std(Ey)/Std(Xy)
Zhang, Gong, Ramsey, Batmanghelich, Spirtes, Glymour, “Causal Discovery in the Presence of
Measurement Error: Identifiability Conditions,” UAI 2017 Workshop on Causality



Eftect of Output-Dependent Selection

Bias
@>EPE0
® The distribution of the observed sample is changed by the

selection process
Pxy|s=1 = B(y)Pxy

® An illustration: Error is not independent any more from cause

Without selection bias With selection bias Estimated noise on selected data

Points selected according’to 0.6f e
p(S =11Y) e 0.4 o sThimacs i el
e ° O o &Ko a.gsg‘,.o 7T . d e °%, .
w» I R A e R e
0.5¢ O 0.2 Sieant I e Ty e Y
c e BN ettt N Ly
d " [ ° '0..‘ o &V ?’.‘.‘: ®e°
U © : e ..’ .i'. :“ - o ‘D‘." o‘.o.ﬁ' e ‘.‘ °°
> 0 S e P o CRT DAL s By
. © 2N N I T X I T
y S T Tihig e RAmEs et
: 8 S 02078 ¥ el S S T,
_05 :-. i- “.. -('T) .i. 0‘.. ::.}..;.:0 :2;'\:: ‘f-:.} ::f .3:0 ..;. s.‘ ;:.‘.
p ’- LIJ - .. o:.. ..f T '-..'.-oo;'. s » he
, 6: S .:.’. oo'. -— o . y=X —0.4 {C. .o. o ) . ::. .;. :{#’;‘ ....’
K —1 s fitted line 0.6 Y ey, Tt T

-0.5 0 0.5 -1 -0.5 0 0.5 1 -0.5 0 0.5



Extension 4: Causal Discovery and Inference
under Output-Dependent Selection

Blood pressure

Zhang, Zhang, Scholkopf, Glymour, “On the Ildentifiability and Estimation of Functional Causal Models in the
Presence of Outcome-Dependent Selection Bias,” UAI 2016



Outline

® (Gausal thinking
® |.earning causality

® (onstraint-based approach
® [unctional causal model-based approach

® Some extensions

® Causality-based learning

® Domain adaptation (transfer learning)




Domain Adaptation (or Transfer Learning)

® ‘[raditional (trammg)

supervised
learning:

te __ pir
Pxy = Pxy

1. Causal relations are stable;

‘ 2. Causal relations imply higher-

level independence (modularity),

. allowing separate

\ parameterization

® Might not be the

case 1n practice:

&1t 3. Causal models are usually

/ easier to learn

Prob. model PU)(X,Y), PO(X)Y), PO(X)Y), ...

PR(X, Y)...



Knowing Effect may Be More

Informative




Possible Situations for Domain Adaptation:
When X—=Y

= = = true function f(x)

covariate shift O training data
(X) ://»?5\;&;‘_ G s v = = ==

O test data Il

fte(x)

(Shimodairaoo; Sugiyama etal.o8; Huang etal.
07, Gretton etal.o8...)

@omaz’D—>®—>®

Wy SiEE

Cdomain @ @

““no clue as to ﬁnd P x (with one source domain)

GO




Simple Situations for Domain
Adaptation: When Y—X (Zhang et al,, 2013)

O
® Y is usually the cause of X

(especially for classification)

o Target shift (TarS) @omaiD—>®_>@

e Conditional shift (ConS)

/_\
' t
@omazD @—>® | PX?
e Generalized target shift (GeTarS) _gelps
@@ |
domain —>-@—>- te
P Y|X

involved parameters estimated by matching Px

Zhang et al., Domain adaptation under target and conditional Shift, ICML 2013
Zhang et al., Multi-source domain adaptation:A causal view, AAAl 2015
Gong, Zhang, et al., Domain adaptation with conditionally transferable components, ICML 2016




Application: Remote Sensing
Image Classification

® Tswvo domains (area 1 & area 2)
® 14classes

Number of patterns - /\
Class Area 1 Area 2 dOmaZD—)@—)' 1

TRl TSl TR2 TSQ

v T3 . Location-scale generalized
Hippo grass 81 81 [83 18 target shift
Floodplain grassesl | 83 75 199 52 R e
Floodplain grasses2 | 74 91 169 46

Heedsl S0 88 1219 S0 | Misclassification rates by different methods
Riparian 102 109 221 48 kY

Firescar? 03 33 215 44 Problem Unweight | CovS TarS ‘LS-GeTarS
Island interior 77 7 166 37 TR, — TSy | 20.73% 20.73% | 20.41% | 11.96%
Acacia woodlands ]4 67 2953 61 TRy — TS | 26.36% 25.32% | 26.28% | 13.56% f

Acacia shrublands 101 89 202 46

Acacia grasslands 184 174 | 243 62

Short mopane 68 85 154 27
Mixed mopane 105 128 203 65
Exposed soil 41 48 81 14
Total 1242 1252 | 2621 627

Zhang et al.,, Domain adaptation under target and conditional Shift, ICML 2013



Causal Domain Adaptation

Networks
iGN
® Which variables should be v
considered for adaptation? G)——xe

)
4 I
f1 (rep—
E{ ——— resented %
by NN)

® How to model and understand the o

. H - /
changes in causal modules and 1 ) .
make prediction? >
X, — 2 (rep-
resented —>@
B2 ——1 by NN)
0 —\ g

Gong, Zhang, ..., Batmanghelich, Causal Domain Adaptation Networks, available upon request



On MNIST Data ] Lo

11

One source domain: ‘f 6 q ') 4 o, —1
Target domain: e 'b' 0 v 7e]

Learned parameter values 0: -0.297 (source, 0°); 0.458 (target,
450)

(Generate new data with

For new values of
0:

- -0.3

- -0.1

- 0.1

- 0.3

- 0.46

- 0.6

- 0.7




Summary

® Different types of “independence” helps in causal discovery:
® (onditional independence: constraint-based approach

® (ause 1 noise in constrained FGMs = causal asymmetry

® Independent changes in P(cause) and P(effect | cause)
® Machine learning/data analysis benefit from causal modeling

® (o beyond the data!
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