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March, 2014

X: rice/wheat agriculture;
Y: culture;
Z: climate etc.:

X⫫Y; 
X⫫Y | Z. 

Under what conditions 
can we say 
X→Y ?

Causal Discovery from Data: 
Examples



Quick Look at Supervised Learning... 

• Given training set S = {(x1, y1), ..., (xn, yn)} 

• H : hypothesis space, a space of  functions f : X→Y. 

• Learning algorithm looks at S and selects from H a function fS : x →y 
such that fS(x) ≈ y in a predictive way or fS generalizes well (go 
beyond data!) 

• What knowledge helps in causal discovery?

not ill
-posed any m

ore...



Outline

• Causal discovery 

• Constraint-based approach 

• Score-based approach 

• Functional causal model-based approach 

• Extensions 

• Causality-based learning 

• Domain adaptation (transfer learning)

 X    Y 
------------- 
-1.1    1.0 
2.1    2.0 
3.1    4.2 

2.3    
-0.6 

1.3    2.2 
-1.8    0.9 
...    ....

X Y

X Y

X Y

or

or
Z



(Local) Causal Markov 
Condition

• Each variable is independent from its non-descendants given its 
parents

smoking

cancer yellow finger

rain

slippery ground

falling down

Common cause

Chain



Is Local Causal Markov 
Condition Enough?

• Can we see whether two arbitrary variables, X and Y, are 
conditionally independent given an arbitrary set of variables, Z ?



D-Separation Tells 
Conditional Independence

• If every path from a node in X to a node in Y is d-separated by Z, 
then X and Y are always conditionalIy independent given Z 

• d: directional...  You will see why



D-Separation

• A set of nodes Z d-separates two sets of nodes X and Y if every path 
from a node in X to a node in Y is blocked given Z.

• A path p is blocked by a set of nodes Z if 

• p contains a chain i→m→j or a common cause i ←m→j such that 
the middle node m is in Z, or

• p contains a collider i→m←j such that the middle node m is in not 
Z and no descendant of m is in Z

X and Y d-separated by {R, V}?
S and U d-separated by {R, V}? X and Y d-separated by {R, P}?

X R S T U V Y
X R S T U V Y

W P Q



D-Separation: Intuition
A

B

C

D

E

F

G

Given Z... Z is fixed, or turned off



Local & Global Markov 
Conditions

• Local Markov condition: 

• In a DAG, a variable X is independent of all its non-
descendants given its parents

• Global Markov condition: 

• Given a DAG, let X and Y be two variables and Z be a set 
of variables that does not contain X or Y. If Z d-separates 
X and Y, then  X⫫Y | Z.

• Actually equivalent on DAGs!



Causal Sufficiency

• A set of random variables V is causally 
sufficient if V contains every direct cause 
(with respect to V) of any pair of 
variables in V

• V = {X,Y,Z}: causally sufficient

• V = {X,Y}: causally insufficient  

• Methods exist in causally insufficient 
cases, e.g., FCI (Chapter 6 of the SGS 
book)

X Y

Z

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

cold winter snow

slippery ground

Why so interesting?



Causal Markov Condition

cold winter snow

slippery ground

falling down



We can See CI Relations 
from DAGs...

• Local Markov condition

• Global Markov condition

• d-separation implies conditional independence:

P (V), where V denotes the set of variables, obeys the global Markov con-
dition (or property) according to DAG G if for any disjoint subsets of variables
X, Y, and Z, we have

X and Y are d-separated by Z in G =) X ?? Y |Z.



Going from CI to Graph?

• Contrapositive:

• Conditional dependence implies d-connection

• What if variables are conditionally independent?

• Can we recover the property of the underlying graph from 
CI relations with Markov condition?

• Arbitrary P(V) would satisfy the global Markov condition 
according to Gf in which there is an edge between each pair of 
variables: trivial !

• Under what assumptions can we have CI ⇒ d-separation?

X and Y are d-separated by Z in G =) X ?? Y |Z.



Faithfulness Assumption

health 
condition

• One may find independence between health condition & risk of 
mortality and between swimming skills & risk of drowning

risk of 
mortality

healthy 
lifestyle

-

- -
swimming 

skills
risk of 

drowning

carelessness

-
+ +

• E.g., if they are linear-Gaussian and a=-bc, then health_condition 
⫫ risk_mortality, which cannot by seen from the graph!

• Faithfulness assumption eliminates this possibility!

a
b c



Causal Structure vs. Statistical Independence 
(SGS, et al.)

causal structure
(causal graph)
 Y → X → Z

Statistical 
independence(s)

 Y      Z | X

Causal Markov condition: each variable is ind. of its non-
descendants (non-effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies 
are entailed by Markov condition in the causal graph

Recall: Y⫫Z ⇔P(Y|Z)=P(Y); Y⫫Z|X ⇔P(Y|Z,X)=P(Y|X)

 Y -- X -- Z ?



Constraint-Based Search?

• First, can we find the skeleton of the 
causal structure? If yes, how?

• Second, can we determine the causal 
direction?

Causal Markov condition + faithfulness

How?



Example I
Step 1: finding skeleton

X1

X2
X3 X4

Causal  
Graph

Independcies 
 

Begin with:

From

X1

X2

X3 X4

X1 X2

X1 X4 {X3}

X2 X4 {X3}

X1

X2

X3 X4

X1

X2

X3 X4

X1

X2

X3 X4

From

From

X1 X2

X1 X4 {X3}

X2 X4 {X3}

 

 X4  X3 

 X2 

 X1 

 X4  X3 

 X2 

 X1 
 X4  X3 

 X2 

 X1 

 X4  X3 

 X2 

 X1 

 X4  X3 

 X2 

 X1 

PAG Pattern 

 X4  X3 

 X2 

 X1 

X1⫫X2 :

Step 1I:  finding v-structure and 
doing orientation propagation



The PC Algorithm: Big Picture

 X1     X2    X3     X4  
------------- 

-1.1    1.0    1.3    
0.2  

2.1    2.0    3.1    
-1.3  3.1    4.2    

2.6    0.6  
2.3    -0.6   
 -3.5    0.8 

1.3    2.2    0.9    

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

- Make use of conditional independence relations



Constraint-Based Causal Discovery
• (Conditional) independence constraints 
⇒ candidate causal structures

• Relies on causal Markov condition & 
faithfulness assumption

• PC algorithm (Spirtes & Glymour, 1991)

• Step 1: X and Y are adjacent iff they are 
dependent conditional on every subset of the 
remaining variables (SGS, 1990)

• Step 2: Orientation propagation

• v-structure 

• Markov equivalence class, with pattern          
Y⎯X⎯Z

• same adjacencies; → if all agree on 
orientation; ⎯ if disagree

Y⫫Z | X

Y      Z 

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

generating

inferring

Y⎯X⎯Z 3 possibilities:



PC 
Algorithm

Discovery Algorithms for Causally Sufficient Structures 117

each, to determine the conditional independence of two variables on the set of all remaining
variables requires considering the relations among the frequencies of 335 distinct states, only a
fraction of which will be instantiated even in very large samples.

We should like an algorithm that has the same input/output relations as the SGS procedure for
faithful distributions but which for sparse graphs does not require the testing of higher order
independence relations in the discrete case, and in any case requires testing as few d-separation
relations as possible. The following procedure (Spirtes, Glymour, and Scheines, 1991) starts
by forming the complete undirected graph, then "thins" that graph by removing edges with zero
order conditional independence relations, thins again with first order conditional independence
relations, and so on. The set of variables conditioned on need only be a subset of the set of
variables adjacent to one or the other of the variables conditioned.

Let Adjacencies(C,A) be the set of vertices adjacent to A in directed acyclic graph C. (In the
algorithm, the graph C is continually updated, so Adjacencies(C,A) is constantly changing as
the algorithm progresses.)

PC Algorithm:

A.) Form the complete undirected graph C on the vertex set V.
B.)

n = 0.
repeat

repeat
select an ordered pair of variables X  and Y  that are adjacent in C such
that Adjacencies(C,X )\{Y} has cardinality greater than or equal to
n, and a subset S  of Adjacencies(C,X )\{Y} of cardinality n, and if
X  and Y  are d-separated given S  delete edge X  - Y  from C and
record S  in Sepset(X ,Y ) and Sepset(Y ,X );

until all ordered pairs of adjacent variables X  and Y  such that
Adjacencies(C,X )\{Y} has cardinality greater than or equal to n and all
subsets S  of Adjacencies(C,X )\{Y} of cardinality n have been tested for
d-separation;
n = n + 1;

until for each ordered pair of adjacent vertices X , Y , Adjacencies(C,X )\{Y} is
of cardinality less than n.

118 Causation, Prediction, and Search

C.) For each triple of vertices X , Y , Z such that the pair X , Y  and the pair Y , Z are each
adjacent in C but the pair X , Z are not adjacent in C, orient X  - Y  - Z as X  -> Y  <- Z if
and only if Y  is not in Sepset(X ,Z).
D. repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A - B as A -> B.

     until no more edges can be oriented.

Figure 1 traces the operation of the first two parts of the PC algorithm:

A B

C

D

E

True Graph

A B

C

D

E

Complete Undirected Graph

No zero order independenciesn = 0

A B

C

D

E

n = 2:     Second order independencies

n = 1      First order independencies

        A      C    B        |

A B

C

D

E

        A      E    B        |

        A       D   B        | 

          C       D    B        |

        B      E         
  
{C,D}|

Resulting Adjacencies

Resulting Adjacencies

Figure 1

Test for (conditional) 
independence with an 

increased cardinality of the 
conditioning set

Finding V-
structures

Y

X Z

Orientation propagation

Avoid spurious v-structures: Away from cycles:



Example 1: College Plans

Sewell and Shah (1968) studied five variables from a sample of 
10,318 Wisconsin high school seniors.  

SEX                             [male = 0, female = 1] 
IQ = Intelligence Quotient  [lowest = 0, highest = 3]  
CP = college plans            [yes = 0, no = 1]  
PE = parental encouragement [low = 0, high = 1] 
SES = socioeconomic status [lowest = 0, highest = 3] 



Example II: Causal analysis of 
archeology data

• 8 variables of 250 skeletons collected from different locations

Thanks to collaborator Marlijn Noback



Example II: Result

• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• PC + kernel-based conditional ind. test (Zhang et al., 2011) seems to 
be a good choice 

Thanks to collaborator Marlijn Noback

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. 
paramasticatory 

behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D) 7. climate (6D)

8. cranial shape 
differentiation 

(255D)

reported



Example II: Result

• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• PC + kernel-based conditional ind. test (Zhang et al., 2011) seems to 
be a good choice 

Thanks to collaborator Marlijn Noback

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. 
paramasticatory 

behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D) 7. climate (6D)

8. cranial shape 
differentiation 

(255D)

reported



How about This Case?

X1 ?? X2;

X1 ?? X4 |X3;

X2 ?? X4 |X3.

What is corresponding causal structure? Possible to 
have confounders behind X3 and X4?

:-)
X1 X2

X3

X4



How about This Case?

X1 → X2          X4←X3

L
L: a latent variable

- Patterns: a description of a class of causal processes described by various 
DAGs.
- In the presence of latent variables, the causal process over measured 
variables O is not necessarily a DAG. How can we represent 
(independence) equivalence classes over O ?

X1 ?? X3;

X1 ?? X4;

X2 ?? X3.



FCI (Fast Causal Inference) 
Allows Confounders

X1 → X2          X4←X3

L

• Assume the distribution over measured variables O is the marginal of a 
distribution satisfying the Markov and faithfulness conditions for the 
true graph

• Results represented by PAGs

What’s FCI’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997



Outline

• Causal discovery 

• Constraint-based approach 

• Score-based approach 

• Functional causal model-based approach 

• Extensions 

• Causality-based learning 

• Domain adaptation (transfer learning)

 X    Y 
------------- 
-1.1    1.0 
2.1    2.0 
3.1    4.2 

2.3    
-0.6 

1.3    2.2 
-1.8    0.9 
...    ....

X Y

X Y

X Y

or

or
Z



Key Issues
• What score to use?

• Bayesian scoring: Allows informative prior 
probabilities of causal structure & parameters

• Non-Bayesian scoring

• How to traverse the search space of the graph? 

• DAGs? Equivalence classes?

• How to do optimization?



GES (Greedy Equivalence Search): 
Score Function

• Assumptions: The score is

• score equivalent (i.e., assigning the same score to equivalent DAGs)

• locally consistent: score of a DAG increases (decreases) when adding 
any edge that eliminates a false (true) independence constraint

• decomposable: 

• E.g., BIC:

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 2002

we can express it as:

Score(G,D) =
nX

i=1

Score(Xi,PaGi ) (1)

Note that the data D is implicit in the right-hand side Equa-
tion 1. Most commonly used scores in the literature have
these properties. For the remainder of this paper, we as-
sume they hold for the scoring function we use.

All of the CPDAG operators from GES are scored using
differences in the DAG scoring function, and in the limit of
large data, these scores are positive precisely for those op-
erators that remove incorrect independences and incorrect
dependences.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators until no
operator has a positive score; these operators correspond
precisely to the union of all single-edge additions to all
DAG members of the current (equivalence-class) state. Af-
ter FES reaches a local maximum, GES switches to the sec-
ond phase—called backward equivalence search or BES—
and greedily applies GES delete operators until no operator
has a positive score; these operators correspond precisely to
the union of all single-edge deletions from all DAG mem-
bers of the current state.

Theorem 1. (Chickering, 2002) Let C be the CPDAG that
results from applying the GES algorithm to m records sam-
pled from a distribution that is perfect with respect to DAG
G. Then in the limit of large m, C ⇡ G.

The role of FES in the large-sample limit is only to identify
a state C for which G  C; Theorem 1 holds for GES under
any implementation of FES that results in an IMAP of G.
The implementation details can be important in practice be-
cause what constitutes a “large” amount of data depends on
the number of parameters in the model. In theory, however,
we could simply replace FES with a (constant-time) algo-
rithm that sets C to be the no-independence equivalence
class.

The focus of our analysis in the next section is on a mod-
ified version of BES, and the details of the delete operator
used in this phase are important. We detail the precondi-
tions, scoring function, and transformation algorithm for a
delete operator in Figure 2. We note that we do not need to
make any CPDAG transformations when scoring the oper-
ators; it is only once we have identified the highest-scoring
(non-negative) delete that we need to make the transforma-
tion shown in the figure. After applying the edge modifi-
cations described in the foreach loop, the resulting PDAG
P is not necessarily completed and hence we may have to
convert P into the corresponding CPDAG representation.
As shown by Chickering (2002), this conversion can be ac-
complished easily by using the structure of P to extract a

Operator: Delete(X,Y,H) applied to C

• Preconditions
X and Y are adjacent
H ✓ NAY,X

H = NAY,X \H is a clique

• Scoring
Score(Y, {PaCY [H} \X)�Score(Y,X [PaCY [H)

• Transformation
Remove edge between X and Y
foreach H 2 H do

Replace Y �H with Y ! H
if X �H then Replace with X ! H

end
Convert to CPDAG

Figure 2: Preconditions, scoring, and transformation algo-
rithm for a delete operator applied to a CPDAG.

DAG that we then convert into a CPDAG by undirecting all
reversible edges. The complexity of this procedure for a P

with n nodes and e edges is O(n · e), and requires no calls
to the scoring function.

4 SELECTIVE GREEDY EQUIVALENCE
SEARCH

In this section, we define a variant of the GES algorithm
called selective GES—or SGES for short—that uses a sub-
set of the GES operators. The subset is chosen based on a
given property ⇧ that is known to hold for the generative
structure G. Just like GES, SGES—shown in Figure 3—has
a forward phase and a backward phase.

For the forward phase of SGES, it suffices for our theoret-
ical analysis that we use a method that returns an IMAP of
G (in the large-sample limit) using only a polynomial num-
ber of insert-operator score calls. For this reason, we call
this phase poly-FES. A simple implementation of poly-FES
is to return the no-independence CPDAG (with no score
calls), but other implementations are likely more useful in
practice.

The backward phase of SGES—which we call selective
backward equivalence search (SBES)—uses only a subset
of the BES delete operators. This subset must necessarily
include all ⇧-consistent delete operators—defined below—
in order to maintain the large-sample consistency of GES,
but the subset can (and will) include additional operators
for the sake of efficient enumeration.

The DAG properties used by SGES must be equivalence
invariant, meaning that for any pair of equivalent DAGs,

Optimal Structure Identification With Greedy Search

We allow there to be missing values in each iid sample, but our results implicitly depend
on the assumption that the parameters of each Bayesian network are identifiable. We will
therefore assume for the remainder of this section that the empirical distribution defined
by the data D converges to p(·) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the
asymptotic behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the
two-phase greedy algorithm and show how it takes advantage of that asymptotic behavior
to identify the optimal solution. Finally, in Section 4.3, we discuss the applicability of the
algorithm to non-Bayesian scoring criteria and to Bayesian scoring criteria for which the
definition of the structure hypothesis diÆers from the one we presented in Section 2.3. We
also discuss how violations of Assumption 1 can aÆect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a DAG G measures the relative
posterior or relative log posterior of the hypothesis Gh that the independence constraints in
G are precisely the independence constraints in the generative distribution. Without loss of
generality, we express the Bayesian scoring criterion SB using the relative log posterior of
G

h:
SB(G,D) = log p(Gh) + log p(D|G

h) (3)

where p(Gh) is the prior probability of G
h, and p(D|G

h) is the marginal likelihood. The
marginal likelihood is obtained by integrating the likelihood function (i.e., Equation 1)
applied to each record in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution

p(·). A scoring criterion S is consistent if in the limit as m grows large, the following two

properties hold:

1. If H contains p and G does not contain p, then S(H,D) > S(G,D)

2. If H and G both contain p, and G contains fewer parameters than H, then S(G,D) >
S(H,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this
paper (i.e., those containing Gaussian or multinomial distributions) are curved exponential

models. The details of this class of model are not important for our results, but Haughton
(1988) shows that (under mild assumptions about the parameter prior) the Bayesian scoring
criterion is consistent for curved exponential models. In particular, Haughton (1988) shows
that Equation 3 for curved exponential models can be approximated using Laplace’s method
for integrals, yielding

SB(G,D) = log p(D|µ̂,Gh)°
d

2
log m + O(1) (4)

where µ̂ denotes the maximum-likelihood values for the network parameters, d denotes
the dimension (i.e., number of free parameters) of G, and m is the number records in D.

519



GES: Search Procedure
• Performs forward (addition) / backward (deletion) equivalence search 

through the space of DAG equivalence classes

• Forward Greedy Search (FGS)

• Start from some (sparse) pattern (usually the empty graph)

• Evaluate all possible patterns with one more adjacency that entail 
strictly fewer CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum

• Backward Greedy Search (BGS)

• Start from the output of the Forward Stage

• Evaluate all possible patterns with one fewer adjacency that entail 
strictly more CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum



GES X

Y

Z

Suppose data were generated by

X

Y

Z

(1)

X

Y

Z

(2)



GES Z1

Y

Z3

Suppose data were generated by X Z2

Imagine the GES procedure...

Z4



• Nonparametric; widely applicable given reliable conditional 
independence tests

• Recovering {causal relations} from {conditional independences}: bounded 
by the equivalence class

• Directly characterize and recover cause-effect relationships?

• additional weak and reasonable assumptions may be needed

X⫫Z | YX Y Z

X Y Z

X Y Z

eq
ui

va
le

nc
e 

cla
ss

• Instead, try to directly identify local 
causal structures with functional causal 
models/structural equation models

X Y

X Y

X Y

or

or
Ztwo-vari

able case
?

Constraint-based Causal Discovery: 
Advantages and Limitations



Outline

• Causal discovery 

• Constraint-based approach 

• Score-based approach 

• Functional causal model-based approach 

• Extensions 

• Causality-based learning 

• Domain adaptation (transfer learning)

 X    Y 
------------- 
-1.1    1.0 
2.1    2.0 
3.1    4.2 

2.3    
-0.6 

1.3    2.2 
-1.8    0.9 
...    ....

X Y

X Y

X Y

or

or
Z



Fully Identifiable Causal 
Structure? Two-Variable Case.

• Structural equation model / 
functional causal model

• Related to this type of 
“independence”:

• Start with the linear case

• Determine causal direction in the 
two-variable case? Identifiability!

funcX

E

Y

P(X)→X→
P(Y|X)

Y
→

⫫

Y = f(X,E), where E ?? X

Y = aX + E, where E ?? X

 X    Y 
------------- 
-1.1    1.0 
2.1    2.0 
3.1    4.2 

2.3    
-0.6 

1.3    2.2 
-1.8    0.9 
...    ....

X Y

X Y

X Y
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or
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(Conditional) Independence
• X⫫Y iff  p(X,Y) = p(X)p(Y) 

• or p(X|Y) = P(X): Y not informative to X 

• X⫫Y | Z iff  p(X,Y|Z) = p(X|Z)p(Y|Z) 

• or, p(X|Y,Z) = p(X|Z): given Z, Y not 
informative to X 

• Divide & conquer, remove irrelevant info...  

• By construction, regression residual is 
uncorrelated (but not necessarily 
independent !) from the predictor
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Gaussian vs. Non-Gaussian 
Distributions
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Causal Asymmetry the Linear 
Case: Illustration
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Super-Gaussian Case
Data generated by Y = aX + E (X →Y):
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More Generally, LiNGAM Model
• Linear, non-Gaussian, acyclic causal model (LiNGAM) 
(Shimizu et al., 2006):

• Disturbances (errors) Ei are non-Gaussian (or at most 
one is Gaussian) and mutually independent

• Example:
X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1

X2 = E2,

X3 = 0.5X2 + E3,

X1 = �0.2X2 + 0.3X3 + E1.

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning 
Research, 7:2003–2030.



Identifiability of Causal 
Direction in the Linear Case

• Supported by the “independent component analysis” 
theory

• Later will consider a more general nonlinear setting, 
and you’ll see the linear-Gassian case is one of the few 
non-identifiable situations



Independent Component Analysis 

X1

Xm

observed 
signals

ICA system

output: as 
independent as 

possible

W… … Y1

Yn

de-mixing

estimate

A… …s1

sn

unknown mixing system

independent 
sources

mixing

…

X = A·S Y = W·X

A… …S1

Sn

unknown mixing system

independent 
sources

mixing

• Assumptions in ICA

• At most one of Si is Gaussian

• #Source <= # Sensor, and A is of full column rank


.5 .3 1.1 �0.3 ...
.8 �.7 .3 .5 ...

�
=


? ?
? ?

�
·

? ? ? ? ...
? ? ? ? ...

�

Hyvärinen et al., Independent Component Analysis, 2001

Then A can be estimated up to 
column scale and permutation 

indeterminacies

A
s1
s2

X1
X2



A Demo of 
the ICA 

Procedure







LiNGAM Analysis by ICA 
• LiNGAM:   

• B has special structure: acyclic relations

• ICA: Y = WX 

• B can be seen from W by permutation 
and re-scaling

• Faithfulness assumption avoided

• E.g., 2

4
E1

E3

E2

3

5 =

2

4
1 0 0

�0.5 1 0
0.2 �0.3 1

3

5 ·

2

4
X2

X3

X1

3

5

,

8
><

>:

X2 = E1

X3 = 0.5X2 + E3

X1 = �0.2X2 + 0.3X3 + E2

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

Xi =
X

j: parents of i

bijXj + Ei or X = BX+E ⇒  E = (I-B)X

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ. 
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’. 
3. B̂ = I� Ẅ0 .



Limitations of LiNGAM
• Confounders

• Measurement noise 

• Feedbacks

• Selection bias

• Various nonlinearities

• Nonlinear function with independent additive 
noise

• Sensor / measurement distortion

• With heteroscedastic noise

• More general forms

Zhang et al., Learning causality and causality-related learning, National Science Review, 2018

Variables: 
Y = Sales price 
X1 = Finished square feet 
X2 = 1 if air conditioning, 0 if no air conditioning 
X3 = 1 for high quality, 2 for medium quality, 3 for low quality construction 

 

Finished square feet

Sa
le

s 
pr

ic
e

linear or nonlinear?X →Y→ S

X1 → X2



More General Functional 
Causal Models



FCMs with Which Causal Direction is 
Generally Identifiable

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chen, 2006b; 
Zhang & Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )



Causal Asymmetry with Nonlinear 
Additive Noise: Illustration 

X

Y

Y = f(X) +E with E⫫X

(Hoyer et al., 2009)



Post-Nonlinear (PNL) Causal Model 
(Zhang & Chan, 2006; Zhang & Hyvärinen, ‘09a)

• Without prior knowledge, the assumed model is expected to be 
• general enough: adapt to approximate the true generating process 

• identifiable: asymmetry in causes and effects       

• Special cases: linear models; nonlinear additive noise models; 
multiplicative noise models:

Xi = fi,2 ( fi,1 (pai) + Ei)

Y = X · E = exp
�
log(X) + log(E)

�



with PNL Model
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Identifiability in Two-variable Case: 
Theoretical Results 

• Two-variable case: if X1→X2, then X2 = f2,2 ( f2,1 (X1) + E2)

• Is the causal direction implied by the model unique?

• By a proof of contradiction

• Assume both X1→X2 and X2→X1 satisfy PNL model (i.e., both directions 
admit independent noise)

• One can then find all non-identifiable cases

Xi = fi,2 ( fi,1 (pai) + Ei)



Identifiability: A Mathematical Result



List of All Non-Identifiable Cases

Causal direction is generally 

identifiable if the data were 

generated according to 

X2 = f2 ( f1 (X1) + E). 

Linear models and nonlinear 

additive noise models are 

special cases.



Outline

• Causal discovery 

• Constraint-based approach 

• Score-based approach 

• Functional causal model-based approach 

• Extensions 

• Causality-based learning 

• Domain adaptation (transfer learning)

 X    Y 
------------- 
-1.1    1.0 
2.1    2.0 
3.1    4.2 

2.3    
-0.6 

1.3    2.2 
-1.8    0.9 
...    ....
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or
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Extension 1: Causality in Time Series

• Functional causal models in time series

• Time-delayed causality + instantaneous 
relations

• Causal discovery from subsampled or 
temporally aggregated data

• From partially observable time series
X1,t-1 

. 

. 

. 
Xn,t-1

X1t 
. 
. 
. 

Xnt

A

X1,t+1 
. 
. 
. 

Xn,t+1

A? ?

X1,t-1 
. 
. 
. 

Xn,t-1

X1t 
. 
. 
. 

Xnt

A

X1,t+1 
. 
. 
. 

Xn,t+1

A? ?... ...

X1,t-1

X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B1 B1

Zhang & Hyvärinen, ECML 2009;  
Hyvärinen , Zhang et al., JMLR 2010; 
Gong, Zhang, Schölkopf, Tao, Geigere, ICML 2015; UAI 2017; 
Geiger, Zhang, Gong, Janzing, Schölkopf, ICML 2015

... ...



Nonstationary/Heterogeneous Data and 
Causality

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, climate 
data...)

• Multiple data sets under different observational 
or experimental conditions

• Causal modeling and distribution shift heavily 
coupled

• Benefit from nonstationarity/heterogeneity!



Extension 2: Causal Discovery from 
Nonstationary/Heterogeneous Data

• Method to determine changing causal 
modules & estimate skeleton

• Causal orientation determination 
benefits from independent changes in 
P(cause) and P(effect | cause)

• How do the nonstationary modules 
change over time / across data sets?

• Detection of nonstationary confounders
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

Kernel nonstationary 
driving force estimation

Zhang et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Zhang et al., Causal discovery in the presence of nonstatioarity/heterogeneity: Skeleton estimation and orientation 
determination, IJCAI 2017



On fMRI Hippocampus

• Compared our method and original 
constraint-based method on 10 data 
sets

• FP rate reduced from 62.9% to 17.1%

• Accuracy of direction determination is 
85.7%
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���

���

���
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Figure 11: The anatom-
ical connections between
the six separate brain
regions.

which provides benefits for further analysis in domain adaptation. We also found
that compared to the original constraint-based method, our method gives much
sparser connections between the features (the number of connections between
the features is reduced from 52 to 26).

8 Conclusion

This paper is concerned with discovery and visualization of nonstationary mod-
els, where causal modules may change over time or across datasets. We assume
a weak causal su�ciency condition, which states that all confounders can be
written as smooth functions of time or the domain index. We proposed (1) an
enhanced constraint-based method for locating variables whose causal modules
are nonstationary and estimating the skeleton of the causal structure over the
observed variables, (2) a method for causal direction determination that takes
advantage of the nonstationarity, and (3) a technique for visualizing nonstation-
ary causal modules.

In this paper we only considered instantaneous or contemporaneous causal
relations, as indicated by the assumption that the observed data are indepen-
dently but not identically distributed; the strength (or model, or even existence)
of the causal relations is allowed to change over time. We did not explicitly con-
sider time-delayed causal relations and in particular did not engage autoregres-
sive models. However, we note that it is natural to generalize our framework to
incorporate time-delayed causal relations, just in the way that constraint-based
causal discovery was adapted to handle time-series data (see, e.g., [34]).

There are several open questions we aim to answer in future work. First, in
this paper we assumed that causal directions do not flip despite of nonstationar-
ity. But what if some causal directions also change over time or across domains?
Can we develop a general approach to detect causal direction changes? Second,
to fully determine the causal structure, one might need to combine the proposed
framework with other approaches, such as those based on restricted functional
causal models. How can this be e�ciently accomplished? Third, the issue of dis-
tribution shift may decrease the power of statistical (conditional) independence
tests. Is it possible to mitigate this problem?

22
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Extension 3: Causal Discovery in the 
Presence of  Measurement Error

• To estimate     over variables      from noisy 
observations  

• Conditional independence/dependence relations 
among      different from those among    

• Illustration: Correlation(X1, X2) & 
partial_correlation(X1, X3 | X2)

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.

0 2 4 6 8 10
� = S td(E 2)/S td(X̃2)
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

Causal Discovery in the Presence of Measurement Error:
Identifiability Conditions
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Abstract

Measurement error in the observed values of
the variables can greatly change the output of
various causal discovery methods. This prob-
lem has received much attention in multiple
fields, but it is not clear to what extent the
causal model for the measurement-error-free
variables can be identified in the presence of
measurement error with unknown variance. In
this paper, we study precise sufficient identifi-
ability conditions for the measurement-error-
free causal model and show what information
of the causal model can be recovered from ob-
served data. In particular, we present two dif-
ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.

1 Introduction

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal
discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search

(GES) (Chickering, 2002).

Causal discovery algorithms aim to find the causal
relations among the observed variables. However, in
many cases the measured variables are not identical to
the variables we intend to measure. For instance, the
measured brain signals may contain error introduced by
the instruments, and in social sciences many variables
are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.

0 2 4 6 8 10
� = S td(E 2)/S td(X̃2)

 

 

⇢ 12

⇢ 13,2

⇢̃ 2

⇢ 12

⇢ 13,2

⇢̃ 2

⇢̃

Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23

(1� ⇢212)
1/2(1� ⇢223)

1/2

=
⇢̃13 � ⇢̃12⇢̃23

1+�2

�
1� ⇢̃2

(1+�2)

�1/2�
1� ⇢̃2

(1+�2)

�1/2

=
r
2
⇢̃
2

1 + �2 � ⇢̃2
.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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Abstract

Measurement error in the observed values of
the variables can greatly change the output of
various causal discovery methods. This prob-
lem has received much attention in multiple
fields, but it is not clear to what extent the
causal model for the measurement-error-free
variables can be identified in the presence of
measurement error with unknown variance. In
this paper, we study precise sufficient identifi-
ability conditions for the measurement-error-
free causal model and show what information
of the causal model can be recovered from ob-
served data. In particular, we present two dif-
ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.

1 Introduction

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal
discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search

(GES) (Chickering, 2002).

Causal discovery algorithms aim to find the causal
relations among the observed variables. However, in
many cases the measured variables are not identical to
the variables we intend to measure. For instance, the
measured brain signals may contain error introduced by
the instruments, and in social sciences many variables
are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.

Measurement error changes 

causal discovery results!
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Effect of Output-Dependent Selection 
Bias

• The distribution of the observed sample is changed by the 
selection process

• An illustration: Error is not independent any more from cause
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Figure 6: Illustration of the e↵ect of outcome-dependent selection. The data were generated from a linear
additive noise model Y = X + E with selection on Y . Left: The data distribution on the whole population
(before applying selection bias). Middle: The distribution of selected data (with selection bias). Right: The
distribution of the estimated noise and cause on the selected data: they are clearly not independent.

First note that if ⌘00E1
6= 0, f(1)0

f(2)0 can be written as

a function of f (1)(x); otherwise, there will exist two

points x1 and x2 corresponding to the same one value

of f (1)(x) but di↵erent values of
f(1)0
f(2)0 , and then (25)

cannot hold on both x1 and x2, leading to a contradic-

tion.

Since
f(1)0

f(2)0 � 1 as a function of f (1)(x), we let
f(1)0

f(2)0 �
1 = fc(f (1)(x)). Further note that l00� is a function of

(f (1)(x) + e1) and that ⌘00E1
is a function of e1. Eq. 25

is then the multiplicative Pexider functional equation

with arguments f (1)(x) and e1. According to Theorem

3.2.3 in (Castillo, 1992), we have the following three

possible solutions to the above functional equation:

P1: l00�(y) ⌘ 0, ⌘00E1
⌘ 0;

P2: l00�(y) ⌘ 0, f(1)0

f(2)0 � 1 ⌘ 0;

P3: l00�(y) = �abecy, ⌘00E1
= aece1 , f(1)0

f(2)0 � 1 = becf
(1)(x)

.

Here a, b, and c are some constants.

We consider the above possible solutions one by one.

1. Solution P1 is not valid, because the condition that

⌘00E2
⌘ 0 does not correspond to a valid distribu-

tion (Kagan et al., 1973).

2. If P2 holds, we have f (1)0 = f (2)0
, i.e., f (1)(x) =

f (2)(x)+ c1, where c1 is a constant. Consequently

e2 = e1 + c1. (Note that the mean of the noise is

not fixed; if one sets it to a constant, say, 0, c1
will then be 0.) Moreover, the condition l00�(y) ⌘ 0
implies that l0�(y) = c2 or that l�(y) = c2y + d1.
That is,

�r(y) = ec2y+d1 = ed1 · ec2f1(x) · ec2e1 .

Bearing (12) in mind , we then have the following

relationships between p(1)X and p(2)X and between

pE1 and pE2 accordingly:

p(2)X / p(1)X · e�c2f
(1)(x),

pE2 / pE1 · e�c2e1 =/ pE1(e2 � c1) · e�c2e2 .

3. If P3 holds, c must be zero such that E1 has a valid

distribution. Furthermore, E1 must be Gaussian

(and correspondingly a must be negative) of the

form pE1 / e
a
2 e

2
1+c3e1+d2 (Kagan et al., 1973). If

the noise is assumed to have a zero mean, then

pE1 / e
a
2 e

2
1 . (26)

Equation
f(1)0

f(2)0 � 1 = b implies that f (2)0 =
1

1+bf
(1)0

, i.e., f (2)(x) = 1
1+bf

(1)(x) + d3. Cor-

respondingly, l00�(y) = �ab, leading to

�r(y) = e
�ab
2 y2+c4y+d4 , (27)

which is a Gaussian function.

Q.E.D.

S4. Proof of Corollary 3

Proof 3 This directly follows from Theorem 2. Here

we set �2(y) ⌘ 1, i.e., (F2,�2(y)) is an ordinary

ANM F2. According to Theorem 1, when E1 is

non-Gaussian, if (F2,�2(y)) and (F1,�1(y)) produce

the same distribution over (X,Y ), then �r(y) =
�2(y)/�1(y) = ��1

1 (y) / ec2y for a constant c2, which
contradicts a). Similarly, when E1 is Gaussian, to

make (11) hold, �r(y) = ��1
1 (y) / e�

ab
2 y2+c4y for

some constants a, b, and c4, contradicting b). Q.E.D.

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1
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ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in

PX,Y |S=1 = �(y)PX,Y
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We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.
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X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.
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corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)
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Suppose the data distribution is generated by a PNL
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with an density ratio �(y), as in (1). Call (F!,�(y))
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interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
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and h1 depends on ⌘̃1, ⌘2, and h in the following way:
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Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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then pY |X,S=1 6= pY |X , and the selection bias, if not
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able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
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E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
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the causal process) is usually not independent from X;
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This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are
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the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d) X Y S

Y X S

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
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functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d) X Y S

Y X S

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
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We now show that the generic identifiability of causal
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allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
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the identification and estimation of functional causal
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selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:
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pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)
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tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-
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Suppose the data distribution is generated by a PNL
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with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the
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where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

(29) with the proper constraints on ↵2i and ↵3i with
the constrained nonlinear optimization toolbox (im-
plemented by the function “fmincon” in MATLAB).

To do so, one has to find the derivative of (29) w.r.t.
the involved parameters ✓:

@Ĵ(✓)

@✓
=
1

n

nX

k=1

h@ ̃X(k)

@✓
+
@ ̃Y (k)

@✓
+  X(k) · @ X(k)

@✓
+

 Y (k) ·
@ Y (k)

@✓

i
.

More specifically,

@Ĵ(✓)

@✓1
=

1

n

nX

k=1

h@3w̃(yk)
@y2@✓1

+  Y (k)
@2w̃(yk)

@y@✓1

i
,

@Ĵ(✓)

@✓2
=

1

n

nX

k=1

h@3log pX(xk)

@x2@✓2
+  X(k)

@2log pX(xk)

@x@✓2

i
,

@Ĵ(✓)

@✓3
=

1

n

nX

k=1

h@3 log pE(yk � fAN (xk))

@x2@✓3
+

@3 log pE(yk � fAN (xk))

@y2@✓3
+

 X(k) · @
2 log pE(yk � fAN (xk))

@x@✓3
+

 Y (k) ·
@2 log pE(yk � fAN (xk))

@y@✓3

i
,

@Ĵ(✓)

@✓4
=

1

n

nX

k=1

h@3 log pE(yk � fAN (xk))

@x2@✓4
+

@3 log pE(yk � fAN (xk))

@y2@✓4
+

 X(k) · @
2 log pE(yk � fAN (xk))

@x@✓3
+

 Y (k) ·
@2 log pE(yk � fAN (xk))

@y@✓4

i
.

The involved partial derivatives can be calculated ac-
cording to the parameterization (28).

S8. More Results on Real Data

We went through the cause-e↵ect pairs (http://
webdav.tuebingen.mpg.de/cause-effect/) to find
data sets which are likely to su↵er the OSB issue ac-
cording to commonsense or background knowledge. We
select Pairs 25, 40, and 41: Pair 25 is about the rela-
tionship between the age (X) and the concrete com-
pressive strength (Y ) of di↵erent samples of concrete;
Pair 40 is on the relations between the age (X) and di-
astolic blood pressure (Y ) of di↵erent subjects; Pair 41
contains the age (X) of the subjects and their plasma
glucose concentration a 2 hours in an oral glucose tol-
erance test (Y ).

The empirical distribution of the data in Pair 25 sug-
gests that it is very likely for the e↵ect to su↵er from
a PNL distortion. We use a rough way to take into
account both the PNL distortion in the causal process
and the OSB. We first fit the PNL causal model (Zhang
& Hyvärinen, 2009) on the data and correct the data
with the estimated PNL transformation on the hypo-
thetical e↵ect. We then fit the ANM-OSB procedure
on the corrected data. To avoid local optima, we run
the algorithm presented in Section 5.1 five times with
random initializations and choose the one with the
highest likelihood. Figure 7 shows the result on Pair
25. As seen from �̂(y), it seems for some reason, the
samples whose compressive strength is very high were
not selected. The estimated function f̂GP

M L seems to
address this issue. For Pair 40, whose results are shown
in Figure 8, �̂(y) suggests that people with relatively
high diastolic blood pressure seem more likely to take
part in the test. The interpretation on the results on
Pair 41 (Figure 9) may require some domain expertise
knowledge.
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Figure 7: Results on pair 25 of the cause-e↵ect pairs.
(a) The scatterplot of the data (after correcting the
nonlinear distortion in the hypothetical cause with the
PNL causal model, the nonlinear regression function
f̂GP on the data, and the estimated function f̂AN

ML by
the proposed maximum likelihood approach. (b) The
estimated density ratio �(y) for the selection proce-
dure.
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Figure 8: Results on pair 40 (original data without
PNL correction).
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• Causal thinking 

• Learning causality 

• Constraint-based approach 

• Functional causal model-based approach 

• Some extensions 
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Domain Adaptation (or Transfer Learning)

target 
(test)

source 
(training)• Traditional 

supervised 
learning:         

• Might not be the 
case in practice:

P te
XY = P tr

XY

(xtr, ytr) xte

Causal model Y→X

Prob. model  P(1)(X,Y), P(2)(X,Y), P(3)(X,Y), ... P(k)(X,Y)...

1. Causal relations are stable;

2. Causal relations imply higher-
level independence (modularity), 
allowing separate 
parameterization

3. Causal models are usually 
easier to learn



Knowing Effect may Be More 
Informative



Possible Situations for Domain Adaptation: 
When X→Y

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
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∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
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whose empirical version is (Kc
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:
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M�, s.t. �i 2 [0, B] and
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mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing
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���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =
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X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .

200 400 600 800 1000 1200
 

 
X

Y For 4−fold cross−validation
Always for training
due to large values

CV (1) CV  (2) CV (3) CV (4)

10
−1

MS
E 
on
 t
es
t 
da
ta
 (
lo
g 
sc
al
e)

 

 

Unweighted

target shift (q=0.5)

target shift (q=1)

covariate shift (q=0.5)  

covariate shift (q=1)

−5 0 5
0

5

10

β

−2 0 2 4
0

2

4

6

8

β

−2 0 2 4
0

2

4

6

β

−2 0 2 4
0

2

4

6

8

β

•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

covariate shift
(Shimodaira00; Sugiyama etal.08; Huang etal.

07, Gretton etal.08...)
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Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =
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X ]� µ̂[Pte
X ]
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=
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�|⌦K̃� � 2
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c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2
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y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.
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Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):
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���ÛX|Y · 1
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i=1

�i�(y
tr
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n

nX
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 (xtei )
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

➘

➘

no clue as to find P te
Y |X

☹ (with one source domain)



Simple Situations for Domain 
Adaptation: When Y→X (Zhang et al., 2013)

• Y is usually the cause of X 
(especially for classification)

P te
X

helps
find
P te
Y |X

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
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X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2
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|
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift (ConS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
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P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]
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���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D
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and D
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):
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•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing
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���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =
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=
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where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Generalized target shift (GeTarS)

involved parameters estimated by matching PX

Zhang et al., Domain adaptation under target and conditional Shift, ICML 2013
Zhang et al., Multi-source domain adaptation: A causal view,  AAAI 2015
Gong, Zhang, et al., Domain adaptation with conditionally transferable components, ICML 2016



Application: Remote Sensing 
Image Classification

Domain Adaptation under Target and Conditional Shift

selected data set No. 68, since 1) the data are non-
stationary time series, 2) there is a strong dependence
between the two variables so that one can be predicted
non-trivially by the other, and 3) the variables are be-
lieved to have a direct causal relation, so that the in-
variance of the conditional distribution of one variable
(e�ect) given the other (cause) is likely to hold approx-
imately. Fig. 6 (top) showing the time series as well
as the joint distribution. Here X and Y stand for the
number of bytes sent by a computer at the tth minute
and the number of open http connections at the same
time, respectively. It is natural to have the causal re-
lation Y � X. One subsample was always used for
training, because on it Y has large values. The re-
maining data were divided into four subsets, and each
time one of them was used for test and the others in-
cluded for training.

Fig. 6 (bottom) shows the estimated �⇥ values on the
four test sets; they match P te

Y well. Table 2 gives the
MSE on the four test sets produced by di�erent ap-
proaches. Note that to achieve robustness of the pre-
diction result, we incorporated an exponent q for �⇥ as
the importance weights, as in correction for CovS with
importance re-weighting (Shimodaira, 2000). q = 1
(i.e., the proposed standard approach) and q = 0.5
were used. From Table 2 one can see TarS gives the
best results on all four test sets.
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Figure 6. Prediction results on Pair 68 of the cause-e�ect
pairs. Top: time series data of X and Y (left, shifted apart
for clarity) and the joint distribution (right). Bottom: es-
timated �� values on the four test sets.

Table 2. Prediction performance (MSE) on test sets.

Test set Unweight. CovS CovS (q = 0.5) TarS TarS (q=0.5)
1 0.3789 0.3844 0.3802 0.3310 0.3229
2 0.0969 0.1126 0.1071 0.0937 0.0887
3 0.0578 0.0673 0.0659 0.0466 0.0489
4 0.2054 0.2126 0.2136 0.2008 0.1630

7.2. Remote Sensing Image Classification

Hyperspectral remote sensing images are characterized
by a dense sampling of the spectral signature of dif-
ferent land-cover types. We used a benchmark data
set in the literature which consists of data acquired by

the Hyperion sensor of the Earth Observing 1 (EO-1)
satellite in an area of the Okavango Delta, Botswana,
with 145 features; for details of this data set, see (Ham
et al., 2005). The labeled reference samples were col-
lected on two di�erent and spatially disjoint areas
(Area 1 and Area 2), thus representing possible spa-
tial variabilities of the spectral signatures of classes.
The samples taken on each area were partitioned into
a training set TR and a test set TS by random sam-
pling. The numbers of labeled reference samples for
each set and class are reported in Table 6. TR1, TS1,
TR2, and TS2 have sample sizes 1242, 1252, 2621, and
627, respectively. One would expect that not only the
prior probabilities of the classes Y , PY , but also PX|Y
would change across the two domains, due to physical
factors related to ground (e.g., di�erent soil moisture
or composition), vegetation, and atmospheric condi-
tions. Our target is to do domain adaptation from
TR1 to TS2 and from TR2 to TS1.

Table 3. Number of training (TR1 and TR2) and test (TS1

and TS2) patterns acquired in the two spatially disjoint
areas for the experiment on remote sensing image classifi-
cation.

Class
Number of patterns
Area 1 Area 2

TR1 TS1 TR2 TS2

Water 69 57 213 57
Hippo grass 81 81 83 18
Floodplain grasses1 83 75 199 52
Floodplain grasses2 74 91 169 46
Reeds1 80 88 219 50
Riparian 102 109 221 48
Firescar2 93 83 215 44
Island interior 77 77 166 37
Acacia woodlands 84 67 253 61
Acacia shrublands 101 89 202 46
Acacia grasslands 184 174 243 62
Short mopane 68 85 154 27
Mixed mopane 105 128 203 65
Exposed soil 41 48 81 14
Total 1242 1252 2621 627

After estimating the weights and/or transformed
training data (with ⇥LS = 10�4), we applied the multi-
class classifier with a RBF kernel on the weighted or
transformed data. Hyperparameters were selected by
cross-validation. Table 4 shows the overall classifica-
tion error (i.e., the fraction of misclassified points) ob-
tained by di�erent approaches for each domain adap-
tation problem. We can see that in this experiment,
correction for target shift does not significantly im-
prove the performance; in fact, the estimated � values

• Two domains (area 1 & area 2)
• 14 classes Domain Adaptation under Target and Conditional Shift

for most classes are rather close to one. However, cor-
rection for conditional shift with LS-GeTarS substan-
tially reduces the overall classification error in both
cases.

Table 4. A misclassification rate on remote sensing data set

under di�erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS
TR1 � TS2 20.73% 20.73% 20.41% 11.96%
TR2 � TS1 26.36% 25.32% 26.28% 13.56%

8. Conclusion and Discussions

We have considered domain adaptation where both the
distribution of the covariate and the conditional distri-
bution of the target given the covariate change across
domains. From the causal point of view, we assume the
target causes the covariate, such that the change in the
the data distribution can be modeled easily. In par-
ticular, we studied three situations, target shift, con-
ditional shift, and generalized target shift which com-
bines the above two situations. We presented practical
approaches to handle them based on the kernel mean
embedding of conditional and marginal distributions.
Simulations were conducted to verify our theoretical
claims, and experimental results on diverse real-world
problems, showed that (generalized) target shift often
happens in domain adaptation, and that the proposed
approaches could substantially improve the classifica-
tion or regression performance.
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Domain Adaptation under Target and Conditional Shift
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Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

Zhang et al., Domain adaptation under target and conditional Shift, ICML 2013



Causal Domain Adaptation 
Networks

• Which variables should be 
considered for adaptation?

• How to model and understand  the 
changes in causal modules and 
make prediction?

2 Domain Adaptation with Invariant Subspace
or Reconstructed Joint Distribution

The key point is that when we make use of invariance subspace, the transforma-
tion from the raw variables to such a representation is not fixed across domains.
How can one determine such a domain-specific transformation?

3 Framework:

Graphical representation...
Relevant features, which are in the Markov blanket of the target variable

Y ...
Factorization...
In the representation given in Figure 1, we have

P (Y |X) = P (Y |MB(Y )) =

Adaptive detection...
Adaptive reconstruction... The optimal classifier is learned w.r.t. the joint

distribution of (Y,MB(Y )). Therefore, for optimal classification, we will figure
out how this joint distribution changes across domains and find it in the target
domain. This involves estimating the change in each P (Xi | PAi), where Xi is a
variable in MB(Y ) and PAi) denotes the set of its parents.

[To be determined: 1. Here we assume the graph is a DAG; otherwise one
may resort to the approach given in Section 5.5. 2. Under the assumption that
Y is a root cause, MB(Y ) consists of the children of Y and other parents of
such children (or spouses). For the change in the distribution of the spouses,
one may use importance reweighing, with the learned density ratios, to correct
distribution shift. 3. For children of Y , we will use generative models to estimate
how their conditional distributions change across domains.

X2X1 X5Y

X3 X6X4

C

Figure 1: A graphical model over Y and features Xi. Y is the variable to be
predicted, and nodes in gray are in its Markov Blanket. C denotes the domain
index; a direct link from C to a variable indicates that the generating process
for that variable changes across domains. Here the generating processes for Y ,
X1, X2, and X3 vary across domains.
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The final objective function to be minimized over all domains is then

ĴF =
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NS +NT
ĴS +

NT
NS +NT

ĴT =
DX

i=1

ni

NS +NT
Ĵ (i) +

NT
NS +NT

ĴT (4)

5.3 Matching Separate Modules

f1 (rep-
resented
by NN)

Y

E1

✓1

X̂1

Y

f2 (rep-
resented
by NN)

X1

E2

✓2

X̂2

Figure 3: The adaptation network for matching separate modules, with modules
Y ! X1 and (Y,X1) ! X2.

In the above optimization procedure, the updates of parameters ✓1 and ✓2
are coupled. Below we propose an alternative optimization procedure in which
those parameters are updated separately.

If we use the Kullback-Leibler divergence to measure the di↵erence in the
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On MNIST Data

For new values of 
θ:
- -0.3
- -0.1
- 0.1
- 0.3
- 0.46
- 0.6
- 0.7

• One source domain:  

• Target domain: 

• Learned parameter values θ: -0.297 (source, 0o); 0.458 (target,
45o) 

• Generate new data with

...

...

5.4 Prediction

5.5 A More General Framework Suitable for Large Data

If one ignores its specific structure and consider it as a network, Fig. 2 actually
takes Y,E1, E2,✓1,✓2 as input and outputs (X1, X2). This can be seen as a
particular type of GAN for domain adaptation, in which the parameters are
used to capture the variability across domains... Generally speaking, however,
this requires a larger sample size to estimate the network and the values of the
parameters ✓1,✓2 for di↵erent domains...

f (rep-
resented
by NN)

Y

E1...
Em

✓1
...

✓p

X̂1

...

X̂n

Figure 4: General adaptation network.

6 Related Work

domain adaptation...
multi-task learning...
causal discovery...

7 Simulation

8 Experiments on Real Data
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Summary
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• Different types of  “independence” helps in causal discovery: 

• Conditional independence: constraint-based approach 

• Cause ⫫ noise in constrained FCMs ⇒ causal asymmetry 

• Independent changes in P(cause) and P(effect | cause) 

• Machine learning/data analysis benefit from causal modeling 

• Go beyond the data!


