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Inference Problems

e Compute the likelihood of observed data
e Compute the marginal distribution p(z4) over a particular subset

of nodes ACV

e Compute the conditional distribution p(zalrs) for disjoint subsets A

and B
e Compute a mode of the density & = a

e Methods we have

rg max p(x)
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[ Brute force ] [ Elimination ] I:>

\_

Message Passing

(Forward-backward , Max-product
/IBP, Junction Tree)
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Individual computations independent
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Sharing intermediate terms
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree




Sum-Product Belief Propagation

Factor Message

matrix-vector product
(for a binary factor)

To T |t = JEN ()\i
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Junction Tree Revisited o
e General Algorithm on Graphs with Cycles — 0
1 2 3 Y
4 425 58 526
- 478 689
o Steps: => Triangularization => Construct JTs

=> Message Passing on Clique Trees
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An Ising model on 2-D image o

e Nodes encode hidden
information (patch-
identity).

e They receive local
information from the
image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.
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Why Approximate Inference?
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p(X) =~ exp{ Y Oijxix; + Y bioxi}
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Why Approximate Inference?
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Approaches to inferenc

e Exact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2005-2015 12



Recap of Belief Propagation



Recap: Belief Propagation

Interactions

Mk—m 37] X E wzj Ly g % Li, HMk—>z xz
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Beliefs and messages in FG
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m,_,,(x;)= H m._,; (x;)

ceN(i\a
b;(x;) o H m, ,.(X;)
T aeN(i)
“beliefs” ‘messages’

b (X)) oc fu(X) ] [ ()

ieN(a)

m, ,;(x;)= Z fa(Xa) Hmj—m(xj)

X, \x; jeN(a)\i
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(Acyclic) Belief Propagation

In a factor graph with no cycles:

1. Pick any node to serve as the root.

2. Send messages from the leaves to the root.
3. Send messages from the root to the leaves.

A node computes an outgoing message along an edge
only after it has received incoming messages along all its other edges.

flies like an arrow

time
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What if there is a loop?



What if the graph is loopy?
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Belief Propagation on loopy cece

graphs :

O O O - —

Mk—>i . l
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e BP Message-update Rules
Mo (x)) o Dy (o x w () [ M (x) bi(x,) ey, (x)] [ M, (%)

k
o Textgrnal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Loopy Belief Propagation o

e A fixed point iteration procedure that tries to minimize F .
e Start with random initialization of messages and beliefs

e While not converged do

b(x;)oc [ m.i(x) b, (X,)oc £,(X,) [, (x

aeN (i) ieN(a)
me ()= [[me () mis(x)= 2 (X)) [[mi.(,
ceN(i)\a X, \x; jeN (a)\i

e At convergence, stationarity properties are guaranteed
e However, not guaranteed to converge!
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Loopy Belief Propagation :

e If BP is used on graphs with loops, messages may circulate
indefinitely

e But let’s run it anyway and hope for the best ... ©

e How to stop it?
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
e |If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study
Kevin Murphy, Yair Weiss, and Michael Jordan.
UAI '99 (Uncertainty in Al). ]
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http://www.cs.ubc.ca/~murphyk/Papers/loopy_uai99.pdf

T
|
So what is going on? o
e Is it a dirty hack that you bet your luck?
‘. r. ‘j
- ‘0 -

» - —
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How to measure how close we to the correct
answer?



Approximate Inference -

e Let us call the actual distribution P
P(X)=1/Z] ] f.(X,)
f.eF

e We wish to find a distribution O such that QO is a “good”
approximation to P

e Recall the definition of KL-divergence

G (X)
KL = E X)1

o KL(Q]|Qy)>=0

o KL(Q4]]Q,)=0 iff Q=Q,

e We can therefore use KL as a scoring function to decide a good Q
e But, KL(Q4]|Qy) = KL(Q,[|Q,)
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Which KL? o°

e Computing KL(P||Q) requires inference!
e But KL(Q||P) can be computed without performing inference

on P
KL(QI P =300 log(F )

=Y 0(X)logO(X)-) O(X)log P(X)
=—H,(X)-E,log P(X)

o Using P(X)=U/Z[]f.(X,)
f,eF

KL(Q|| P) = ~H ,(X)~ E, log(1/ Z [ ] £,(X.))
— _H,(X)-logl/Z~ Y E,log f.(X,)

f.eF
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Optimization function

KL(Q|| P) =

~H,(X)- Y E,log f,(X,)+logZ
fucF

N Y
e
F(P,0)

o Wewill call F(P,Q) the “Free energy” *
o [(P,P)=?

F(P,Q) >= F(P,P)

*Gibbs Free Energy
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The Energy Functional :
e Let uslook at the functional
F(P,Q)=~Hy(X)~ > E,log f,(X,)
foeF
o ) E,logf.(X,) can be computed if we have marginals over each f,

fucF

o Hy,=-) O(X)logO(X) is harder! Requires summation over all
X
possible values
e Computing F, is therefore hard in general.

e Ourgoalsis to:
Can we approximate it?

Q" = arg gl[F(P, Q)

Can we suggest an easy family?
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Work out a simple case



Do you remember this from lecture 6 7
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A Tree example

DO 06

p(X1,...,Xg) = %¢43(X4,X3)¢32(X3,Xg)qbgl(Xz,X1)¢15(X1,X5)¢56(X5,X6) o

F(P,Q)=-H,(X)- ) E,log f,(X,)
fu€F

H(Xy,---,Xg)=— > Ellogp(X,)]+ ) E[logp(x;)]
acEnum 1€den
F(Xq,-- Z Elog | + Z Elog ;

aEnum 1€den



For a general tree

DO 06

F(P,Q)=-H,(X)- ) E,log f,(X,)

* The probability can be written as:  h(x) = Hba (Xa)Hbi (xl )1 d
=—Zzb inb, (x, )+ Z (d, IZb )nbd,(x
Treezzzba Xa agia; Z 1 d Zb lnb

kA

Degree of the node

— involves summation over edges and vertices and is therefore easy to compute

:E2+F23+--+F67+F78_Fl_Fs_Fz _F6_F;>_F7
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Let’s extend it to a general graph



Bethe Approximation to Gibbs 43+

Free Energy o

e For a general graph, choose F(P,0) = Fota

H e = ZZb )inb, ( Zd 1219 )nb,(x

Frse = XT3 ) fﬂ > 1-a)Th (s i <fa<xa>>—Hbm

e Called “Bethe apprOX|mat|on after the phyS|C|st Hans Bethe

Fbethe—1712+F23+ +F7+F78 F F 2F ZF — I

e Equal to the exact Gibbs free energy when the factor graph is a tree

e In general, Hg. is Not the same as the H of a tree
© Eric Xing @ CMU, 2005-2015 27



Bethe Approximation

e Pros:

e [Easy to compute, since entropy term involves sum over pairwise and
single variables

e Cons:
o F'(P,0)=F,,. may or may not be well connected to F(P,Q)
e It could, in general, be greater, or less than F(P,Q) !!
e Optimize each bH(x))'s.
e For discrete belief, constrained opt. with Lagrangian multiplier

e For continuous belief, not yet a general formula
e Not always converge
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Bethe Free Energy for Factor Graph of Discrete RVs

W

FBethe = ZZ() Xq) —|—Z (1 —d; Zb- x;) In b; (x;)
Hpethe = — ZZb Xq) In by ( +Z (d; — 1) Zb x;) In b; (x;)
FBethe — Z<fa(xa)> — HBethe

a
How about optimizing this:

min FBethe
ba (Xa ) ,b; (Xi )

Subject to:




Minimizing the Bethe Free Energy

° L:FBethe_I_Z}/i{l_Zbi(xi)}

Y Y Sl bl

a ieN(a) x;

e Set derivative to zero




Constrained Minimization of the 444

Bethe Free Energy e

L=Fyepe+ D 7,42 b:(x)—1}

Ty zzaxx,-){zba(zfa)—a(xi)}

a ieN(a) x; X, \x;

oL .
B —> b.(x,) exp( ;)z (x, )j
oL B B
ob (X)) =0 —= b,(X,) eXp{ E, (Xa)+ie;(;lﬁai(Xi)j
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Bethe = BP on FG ot

b,(x,) o exp

e \We had:
[ 2 A, )j ba(Xa)OCeXp(—logﬂ(Xa)Jr Zﬁai(xl-)j

aeN(i) ieN(a)

o Identify 4, (x)=log(m,_,(x,))=log Hmb%i(xi)
e to obtain BP equations: beN(i)#a

' b(x;) o< f,(x;) Hma—n(x)

— L— T GEN(i)T
1 “beliefs” ‘messages”
l l ba(Xa)OCfa(Xa)ll llmc—n'(xi)
_— a __ ieN(a)ceN(i)\a
| The “belief’ is the BP approximation of

the marginal probability.
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BP Message-update Rules oo
X, \x;
m,_,,(X;) = Z S (X,) H Hmb%j(xj)
X, \x; jeN(a)\i beN(j)\a

( A sum product algorithm )

I a l
O— O C—=
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Summary so far

P(X)= 1/ZHf(X)

F(P,0)= ZZb log +21 d,) Zb ogb,(x

NI %J)l 0 < ba(Xa)oceXp(—logﬂ(Xa)+ Nz(gaxx,-)j
© Eric Xing @ CMU, 2005_?;6)61-) o exp( Z ﬂ (X )j

aeN(i)




The Theory Behind LBP oo

e For a distribution p(X|#) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

q" =argmin { Fy,,(p.q) }‘

Froe = Z T o) 3 1 b x i ) =5, )~

[ Optimizing the marginal in the Bethe energy is a way to make q }

tractable !

© Eric Xing @ CMU, 2005-2015 46



The Theory Behind LBP oo

e But we do not optimize g(X) explicitly, focus on the set of beliefs
« eg, b=1b,;=1(x,x;), b=71(x,)}
e Relax the optimization problem

e approximate objective: H zF(b)
e relaxed feasible set: !

m_)mo (mo 29‘4)

b’ =argmin | (E), +F(b) |

e The loopy BP algorithm: beM

o

e a fixed point iteration procedure that tries to solve b*
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The Theory Behind LBP e

e But we do not optimize g(X) explicitly, focus on the set of beliefs
- €8, b= {bi,j :T(xiﬂxj)a b, =7(x,)}
e Relax the optimization problem

e approximate objective: H,,.po = H(b/.d., b)

M,={ 720D 7(x) =1 r(x;,x,)=7(x,) |

e relaxed feasible set:

* .
b’ =argmin { (E), +F(b) }
e The loopy BP algorithm: 2o
e a fixed point iteration procedure that tries to solve b*
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