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Inferential Problems

g
! / p(y, z)dz

Marginal likelihood/
Model evidence

Most inference problems will be one of:

Marginalisation p(y) — /p(y,é’)d@

Expectation |x / f y | x)d

Prediction P(Yrs1) = / P(Ye+1|ye)p(ye ) dy,



Variational Methods

‘Variational riciple |
General family of methods for approximating
complicated densities by a simpler class of densities.

K L{q(z|y)|lp(z|y)] Approximation class

True posterior

Deterministic approximation procedures
with bounds on probabilities of interest.

Fit the variational parameters.



Variational Calculus

Called a variational method because it derives from the
Calculus of Variations

Functions: |
e Variables as input, output is a value.

, d
e Full and partial derivatives 4

d

e E.g., Maximise likelihood p(x|g) w.rt. |
parameters 6

We exploit both types of derivatives in variational inference.
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Functionals:
¢ Functions as input, output is a value.

OF
e Functional derivatives 5f

e £.g., Maximise the entropy H[p(x)]
w.r.t. p(x)



Variational Calculus

Two basic rules
 Functional derivative: 55]{((;/)) =5 (x — xl)
. 0 Of(x) 0 0f(x)
- Commutative rule: =
of(x') Ox ox 0 f(x')
Simple Example: Maximize the entropy w.r.t p(x)
max_ Hlp(x) Hlp(@)] =~ [ pla) ogpla)ds
SHp(x)] _ 0 [ 1 o o
5p(z) 5p() /fp( )logp(z)dr — —/p(x)@ﬂx—az Ydx —/logp(az)5(x x')dx

—1 — log p(z)



Variational Methods

* Goal: Approximate a difficult distribution p(x|e) with a new distribution q(x)
* p(x|e) and q(x) should be “close”
* Computation on g(x) should be easy

* How should we measure distance between distributions?
* The Kullback-Leibler divergence (KL-divergence) between two distribution p and q is defined as

D(pllq) = Zp 3

* |t measures the expected number of extra bits (nats) required to describe samples from p(x)
using a code based on q instead of p

* D(ql|lq) = 0forall p, q with equality ifand only if p = ¢
* The KL-divergence is asymetric



Variational Inference

G/
Ve Me an o
Let’s look at the unnormalized distribution Xamp e of
nOr
q(x) Malize
J(q) q(x) log = :
zx: p(x)

——————

Non-negative

Since Z is constant, by minimizing J(q), we will force q to become close to p



Let’s repeat that again ...

q (z) = argqgl)iélg K L(q(z)||p(z||D))

K L(q(z)||p(z||D)) = Ey[log q(z)] — E,[log p(z|D)]
K L(q(z)||p(z||D)) = Eqllog q(z)] — E,[log p(z, D)| + log p(D)

K L(q(2)||p(2||D))

ELBO(q) = E,[log p(2, D)] — E, [log q(z)] log p(D)
ELBO(q)




Alternative Interpretations

Jq) = D q(x)log 9(0x)

» px)

= E,[log q(x)] + E,[—logp(x) =, —H(q) + ]Eq[E(X)]‘E

variational free energy or
Helmholtz free energy

J(q) = Eg[logqg(x)— logp(x)p(D)]
= E,llog g(x) — log p(x) — log p(D)]
= Eq4[—log p(D)] + KL(ql|p)




Forward or Reverse KL



Which direction of KL divergence

* Suppose pis the true distribution

D(pllq) = Zp log—§

p are typlcally mtractable
How can | sample from it?

e What about the reverse direction

More tractable

D(alle) = Y la(x)og 2

au - = == -

How | don’t know how to evaluate it?



Which Direction of KL?

Information Projection

Moment Projection

KL(q||p) = Zx: q(x) log pg; KL(p||q) = Z p(x) log qg;

* This is infinite if g(x) = 0 and p(x) > o.
This is zero avoiding, and the forward
KL over-estimates the support of p.

* This is infinite if p(x) = 0 and q(x) > o.

* Thus we must ensure that if p(x) = 0
then q(x) = o.

* Thus the reverse KL is zero forcing
and q will under-estimate the support
of p.



Example: Single Gaussian

Information Projection

Moment Projection

KL(ql|p) = Zx: q(x) log % KL(pllg) = ) p(x)log %
1 " ! : '
0.5 % 05 @
00 O_S — O() 0:5 21

p=Green, g*=Red p=Green, g"=Red



Example: Mixture of Gaussians

Information Projection

KL(gllp) =

X

q(x) log %

:
&

3

p=Blue, g*=Red (two local minima!)

Moment Projection

p(x)




Let’s apply this technique in a context



Review: Jensen Inequality

An important result from convex analysis:

D

For concave functions f(.) 1f(x)

f(Elz]) >

Logarithms are strictly concave allowing us to use Jensen’s inequality.

l/ ).da:>/ 7) log g(x)da




Let’s Take a Look at an Integration

log p(y) = log. | p(yl2)p(2)dz
log p(y) = log / (y|2)p -dz

ogp(v) = [ ata1os (1 <y|z>q§z§) L

:/q(z)logp(y|z)_/Q(z) 10g;%

log / p(2)g(z)de > / p(x) log g(x)da

=Ky llogp(ylz)] — KL[q(2)|p(2)]




Interpreting the Lower Bound (ELBO)

Fiy-0) = Eqe) log p(y12))|- (KL [a()Ip(2)]

Approximate
Posterior

Approximate posterior

Reconstruction

Reconstruction Cost: The
expected log-likelihood
measure how well samples

distribution q(z): Best match from g(z) are able to

to true posterior

p(z|y), one of the unknown
inferential quantities of
interest to us.

explain the data y.

Penalty

Penalty: Ensures the the
explanation of the data
q(z) doesn’t deviate too
far from your beliefs p(z).
A mechanism for realising
Okham’s razor.



Interpreting the Lower Bound (ELBO)

Pf(y, q) =

5y llog p(y12)] — KL [g(2)]p(2)]

Some comments on q:

e Integration is now optimisation: optimise for gq(z) directly.
e | write g(z) to simplify the notation, but it depends on the data, g(z|y).
e Easy convergence assessment since we wait until the free energy (loss) reaches

convergence.

e Variational parameters: parameters of g(z)
e E.g., if a Gaussian, variational parameters are mean and variance.
e Optimisation allows us to tighten the bound and get as close as possible to the
true marginal likelihood.



F(y,q) = Eq2) [logp(y|z)] — KL |[q(2)||p(2)]

Approximate
Posterior

How to implement it?
What is g exactly?



Free-form and Fixed-form

Free-form: variational method solves for the exact distribution setting the functional
derivative to zero.

S ]_-( ) Great! The optimal solution is
Y4 — 0 s.t. / q( z)dz —1 the true posterior distribution.

6q(2)

q(z) o< p(z) exp(log p(y|z, 0))

But solving for the normalisation
IS our original problem.

Free-form: variational method specifies an explicit form of the g-disribution.

This is ideally a rich class of

de (Z ) — f (Z, ) distributions. Parameters ¢ are

called variational parameters.




(Naive) Mean Field Approach

Very popular approach assuming the posterior is fully factorizable

= Hq@‘(il?z';@)

. ﬁ ok
i




Mean Field Approach

Very popular approach assuming the posterior is fully factorizable
= H qi (45 i)
?

Goal: optimizing this cost function over g;

min K L(q||p)

d1," " 4D

Remember that we want to maximize this lower bound:
L(q) = —J(q) = og PLX)
(9) =—-J(q) =) _a(x)log 1) < 8P(D)

X



Mean Field Updates

Let’s focus on g; (holding all other terms constant)

Lg) = > J]a® ['08 p(x) — D log Qk(xk)]
x i P
Z Z qj(x;) | [ qi(xi) [log p(x) — Z log Qk(xk)]

i#)

= X q,(x,)zr[q,(x,)logp(x)— E g [log p(x)]

> log qi(x«) *1,|°8 qj(xjﬂ

k #Jj \

Z q;(x; )|Iog fi( XJ) Z qj(x;) log qj(x;) + const



Mean Field Updates

Let’s focus on g; (holding all other terms constant)
Lg) = > ]]ak llog p(x) — ) log Qk(xk)]
X k

= qu x;) log f;(x;) qu x;) log gj(x;) + const

X;

Xj J

L(qj) = Bq, |Eq_, [logp(x)]| + H(q;)

OL(q; N
=0 (45) = E,_ . logp(x)] —logg; —1 =10

0q; 0q;
q; o< expiE,_. [logp(x)|}




Case study: Latent Dirichlet Allocation



Latent Dirichlet Allocation

* Plate Diagram

®-OOO
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Latent Dirichlet Allocation

* Plate Diagram

Dirichlet @
Document-specific
topic distribution @ Topic Dirichlet
Topic assignment
Observed word @< @
N, K
M




LDA Inference

* Bayesian Approach

Dirichlet

Document-specific

topic distribution Dirichlet

Topic assignment

Observed word




LDA Inference

* Bayesian Approach

Dirichlet

Document-specific

topic distribution Dirichlet

Intractable

Observed word




e Joint distribution

Inference

K

M N,
p(-) = p(a)p(B) Hp(é’m]a) H P(Tmn|2nm, {¢k}§:1)p(znm|9m) Hp<¢k|5)

e |atent variables

k

{¢k}§:17 {znm ) {0m}

e Posterior distribution
a(-) =[] p(ex) [] p(6m)
k=1 m=1

H P(2nm)

n=1

@-O+®®

®




Let’s work out one of the updates....

Remember this:

@(6rm) o< XD |Ep 4(z,,) 108 D(60n )] +Zlogp<znm|em>] q; < exp{Eq_; [log p(x)|}
In LDA: ) ©
Dirichlet: p(Om]a) o< exp !Z ap — 1) log Hmk]
Categorical:  p(zmn|0m) o< exp [Zl Zmn = k) log ka]
- - OO
We Obtain: M

q(0p,) o< exp [Z (Z q(zmn = k) + ax — 1) log an]

k=1 \n=1



Advantages and Disadvantages

Disadvantages:

* An approximate posterior only - not always
* Difficulty in optimisation — can get stuck in
guaranteed to find exact posterior in the

limit. local minima.
e Typically under-estimates the variance of the
posterior and can bias maximum likelihood
parameter estimates.
Limited theory and guarantees for variational
methods.

Advantages:

Applicable to almost all probabilistic models:
non-linear, non-conjugate, high-dimensional,
directed and undirected.

Can be faster to converge than competing
methods.

Easy convergence assessment.

Numerically stable.

Can be used on modern computing
architectures (CPUs and GPUs).

Principled and scalable approach for model
selection.

33



Mean field vs LBP

LBP minimizes the Bethe energy while MF maximizes the ELBO.

LBP is exact for trees whereas MF is not, suggesting LBP will in general.

LBP optimizes over node and edge marginals, whereas naive MF only optimizes
over node marginals, again suggesting LBP will be more accurate.

MF objective has many more local optima than the LBP objective, so optimizing
the MF objective seems to be harder.

MF tends to be more overconfident than BP

the advantage of MF is that it gives a lower bound on the partition function while
for LBP we don’t know the relationship.

MF is easier to extend to other distributions besides discrete and Gaussian.
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