Mean Field Approximation

Kayhan Batmanghelich

Slides Credit (Partially adopted from):

- CSC 412 (UofT): Zemel & Urtasun
- Shakir Mohamed (DeepMind)

Inferential Problems

Posterior
$$p(z|y) = \frac{ \begin{bmatrix} \text{Likelihood} \\ p(y|z) \end{bmatrix} \underbrace{ p(z) }_{p(z)} }_{\text{Marginal likelihood/}}$$

Most inference problems will be one of:

Marginalisation

$$p(y) = \int p(y,\theta)d\theta$$

Expectation

$$\mathbb{E}[f(y)|x] = \int f(y)p(y|x)dy$$

Prediction

$$p(y_{t+1}) = \int p(y_{t+1}|y_t)p(y_t)dy_t$$

Variational Methods

Variational Principle

General family of methods for approximating complicated densities by a simpler class of densities.

Slides Credit: Shakir Mohamed (DeepMind)

Variational Calculus

Called a variational method because it derives from the Calculus of Variations

Functions:

- Variables as input, output is a value.
- ullet Full and partial derivatives $\frac{df}{dx}$
- E.g., Maximise likelihood $p(x|\theta)$ w.r.t. parameters θ

We exploit both types of derivatives in variational inference.

Functionals:

- Functions as input, output is a value.
- ullet Functional derivatives $\frac{\delta F}{\delta f}$
- E.g., Maximise the entropy H[p(x)]
 w.r.t. p(x)

Variational Calculus

Two basic rules

· Functional derivative:

$$\frac{\delta f(x)}{\delta f(x')} = \delta(x - x')$$

· Commutative rule:

$$\frac{\delta}{\delta f(x')} \frac{\partial f(x)}{\partial x} = \frac{\partial}{\partial x} \frac{\delta f(x)}{\delta f(x')}$$

Simple Example: Maximize the entropy w.r.t p(x)

$$\max_{p(x)\in\mathcal{P}} H[p(x)] \qquad H[p(x)] = -\int p(x)\log p(x)dx$$

$$\frac{\delta H[p(x)]}{\delta p(x)} = -\frac{\delta}{\delta p(x)} \int p(x)\log p(x)dx \qquad = -\int p(x)\frac{1}{p(x)}\delta(x-x')dx' - \int \log p(x)\delta(x-x')dx'$$

$$= -1 - \log p(x)$$

Variational Methods

- Goal: Approximate a difficult distribution p(x|e) with a new distribution q(x)
 - p(x|e) and q(x) should be "close"
 - Computation on q(x) should be easy
- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distribution p and q is defined as

$$D(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

- It measures the expected number of extra bits (nats) required to describe samples from p(x) using a code based on q instead of p
- $D(q||q) \ge 0$ for all p, q with equality if and only if p = q
- The KL-divergence is asymetric

Variational Inference

Let's look at the unnormalized distribution

nalized distribution
$$J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{\tilde{p}(\mathbf{x})}$$

$$= \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{\tilde{p}(\mathbf{x})}$$

$$= \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{Z \cdot p(\mathbf{x})}$$

$$= \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} - \log Z$$

$$= \begin{bmatrix} KL(q||p)| - \log Z & J(q) \ge -\log Z \end{bmatrix}$$
Non-negative

Since Z is constant, by minimizing J(q), we will force q to become close to p

Let's repeat that again ...

$$q^*(\mathbf{z}) = \arg\min_{q(\mathbf{z}) \in \mathcal{Q}} KL(q(\mathbf{z})||p(\mathbf{z}||\mathcal{D}))$$

$$KL(q(\mathbf{z})||p(\mathbf{z}||\mathcal{D})) = \mathbb{E}_q[\log q(\mathbf{z})] - \mathbb{E}_q[\log p(\mathbf{z}|\mathcal{D})]$$

$$KL(q(\mathbf{z})||p(\mathbf{z}||\mathcal{D})) = \mathbb{E}_q[\log q(\mathbf{z})] - \mathbb{E}_q[\log p(\mathbf{z},\mathcal{D})] + \log p(\mathcal{D})$$

Alternative Interpretations

$$egin{array}{lll} J(q) &=& \sum_{\mathbf{x}} q(\mathbf{x}) \log rac{q(\mathbf{x})}{ ilde{p}(\mathbf{x})} \ &=& \mathbb{E}_q[\log q(\mathbf{x})] + \mathbb{E}_q[-\log ilde{p}(\mathbf{x})] = -\mathbb{H}(q) + \mathbb{E}_q[E(\mathbf{x})] \end{array}$$

View 1: Minimize expected energy while maximizing the entropy

variational free energy or Helmholtz free energy

$$J(q) = \mathbb{E}_{q}[\log q(\mathbf{x}) - \log p(\mathbf{x})p(\mathcal{D})]$$

$$= \mathbb{E}_{q}[\log q(\mathbf{x}) - \log p(\mathbf{x}) - \log p(\mathcal{D})]$$

$$= \mathbb{E}_{q}[-\log p(\mathcal{D})] + KL(q||p)$$

View 2: Expected "Evidence" plus a penalty term that measures how far apart the two distributions are

Forward or Reverse KL

Which direction of KL divergence

• Suppose p is the true distribution

$$D(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

p are typically intractable How can I sample from it?

What about the reverse direction

$$D(q||p) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

How I don't know how to evaluate it?

Which Direction of KL?

Information Projection

$$KL(q||p) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

- This is infinite if p(x) = 0 and q(x) > 0.
- Thus we must ensure that if p(x) = 0then q(x) = 0.
- Thus the reverse KL is zero forcing and q will under-estimate the support of p.

Moment Projection

$$KL(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

This is infinite if q(x) = 0 and p(x) > 0.
 This is zero avoiding, and the forward KL over-estimates the support of p.

Example: Single Gaussian

Information Projection

$$KL(q||p) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

Moment Projection

$$KL(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

Example: Mixture of Gaussians

Information Projection

$$KL(q||p) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

p=Blue, $q^*=$ Red (two local minima!)

Moment Projection

$$KL(p||q) = \sum_{\mathbf{x}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$$

Let's apply this technique in a context

Review: Jensen Inequality

An important result from convex analysis:

For concave functions
$$f(.)$$

$$f(\mathbb{E}[x]) \ge \mathbb{E}[f(x)]$$

Logarithms are strictly concave allowing us to use Jensen's inequality.

$$\int p(x)g(x)dx \ge \int p(x)\log g(x)dx$$

Let's Take a Look at an Integration

Integral problem

$$\log p(y) = \log \int p(y|z)p(z)dz$$

$$\log p(y) = \log \int p(y|z)p(z) \frac{q(z)}{q(z)} dz$$

Jensen's inequality

$$\log \int p(x)g(x)dx \ge \int p(x)\log g(x)dx$$

$$\log p(y) \ge \int q(z) \log \left(p(y|z) \frac{p(z)}{q(z)} \right) dz$$

$$= \int q(z) \log p(y|z) - \int q(z) \log \frac{q(z)}{p(z)}$$

Variational lower bound

$$= \mathbb{E}_{q(z)}[\log p(y|z)] - KL[q(z)||p(z)]$$

Interpreting the Lower Bound (ELBO)

$$\mathcal{F}(y,q) = \mathbb{E}_{q(z)} \left[\log p(y|z) \right] - \left[KL \left[q(z) || p(z) \right] \right]$$
Reconstruction Penalty

Approximate Posterior

Approximate posterior measure how well sa distribution q(z): Best match from q(z) are able to to true posterior explain the data y. p(z|y), one of the unknown inferential quantities of interest to us.

Reconstruction Cost: The expected log-likelihood measure how well samples from q(z) are able to explain the data y.

Penalty: Ensures the the explanation of the data q(z) doesn't deviate too far from your beliefs p(z). A mechanism for realising Okham's razor.

Interpreting the Lower Bound (ELBO)

$$\mathcal{F}(y,q) = \mathbb{E}_{q(z)} \left[\log p(y|z) \right] - KL \left[q(z) || p(z) \right]$$

Some comments on *q*:

- Integration is now optimisation: optimise for q(z) directly.
 - I write q(z) to simplify the notation, but it depends on the data, q(z|y).
 - Easy convergence assessment since we wait until the free energy (loss) reaches convergence.
- Variational parameters: parameters of q(z)
 - E.g., if a Gaussian, variational parameters are mean and variance.
 - Optimisation allows us to tighten the bound and get as close as possible to the true marginal likelihood.

$$\mathcal{F}(y,q) = \mathbb{E}_{q(z)} \left[\log p(y|z) \right] - KL \left[q(z) || p(z) \right]$$
 Approximate Posterior

How to implement it? What is q exactly?

Free-form and Fixed-form

Free-form: variational method solves for the exact distribution setting the functional derivative to zero.

$$\frac{\delta \mathcal{F}(y,q)}{\delta q(z)} = 0$$
 s.t. $\int q(z)dz = 1$

$$q(z) \propto p(z) \exp(\log p(y|z, \theta))$$

Great! The optimal solution is the true posterior distribution.

But solving for the normalisation is our original problem.

Free-form: variational method specifies an explicit form of the q-disribution.

$$q_{\phi}(z) = f(z; \phi)$$

This is ideally a rich class of distributions. Parameters ϕ are called variational parameters.

(Naïve) Mean Field Approach

Very popular approach assuming the posterior is fully factorizable

$$q(\mathbf{x}; \boldsymbol{\phi}) = \prod_{i} q_i(x_i; \phi_i)$$

Mean Field Approach

Very popular approach assuming the posterior is fully factorizable

$$q(\mathbf{x}; \boldsymbol{\phi}) = \prod_{i} q_i(x_i; \phi_i)$$

Goal: optimizing this cost function over q_i

$$\min_{q_1, \cdots, q_D} KL(q||p)$$

Remember that we want to maximize this lower bound:

$$L(q) = -J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{\tilde{p}(\mathbf{x})}{q(\mathbf{x})} \leq \log p(\mathcal{D})$$

Mean Field Updates

Let's focus on q_i (holding all other terms constant)

$$L(q_{j}) = \sum_{\mathbf{x}} \prod_{i} q_{i}(\mathbf{x}) \left[\log \tilde{p}(\mathbf{x}) - \sum_{k} \log q_{k}(\mathbf{x}_{k}) \right]$$

$$= \sum_{\mathbf{x}_{j}} \sum_{\mathbf{x}_{-j}} q_{j}(\mathbf{x}_{j}) \prod_{i \neq j} q_{i}(\mathbf{x}_{i}) \left[\log \tilde{p}(\mathbf{x}) - \sum_{k} \log q_{k}(\mathbf{x}_{k}) \right]$$

$$= \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_{i}(\mathbf{x}_{i}) \log \tilde{p}(\mathbf{x}) - \mathbb{E}_{-q_{j}} [\log \tilde{p}(\mathbf{x})]$$

$$= \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_{i}(\mathbf{x}_{i}) \left[\sum_{k \neq j} \log q_{k}(\mathbf{x}_{k}) + \log q_{j}(\mathbf{x}_{j}) \right]$$

$$= \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \log f_{j}(\mathbf{x}_{j}) - \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \log q_{j}(\mathbf{x}_{j}) + \text{const}$$

Mean Field Updates

Let's focus on q_i (holding all other terms constant)

$$L(q_{j}) = \sum_{\mathbf{x}} \prod_{i} q_{i}(\mathbf{x}) \left[\log \tilde{p}(\mathbf{x}) - \sum_{k} \log q_{k}(\mathbf{x}_{k}) \right]$$

$$= \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \log f_{j}(\mathbf{x}_{j}) - \sum_{\mathbf{x}_{j}} q_{j}(\mathbf{x}_{j}) \log q_{j}(\mathbf{x}_{j}) + \text{const}$$

$$L(q_{j}) = \mathbb{E}_{q_{j}} \left[\mathbb{E}_{q_{-j}} \left[\log \tilde{p}(\mathbf{x}) \right] \right] + H(q_{j})$$

$$\frac{\delta L(q_{j})}{\delta q_{j}} = 0 \qquad \frac{\delta L(q_{j})}{\delta q_{j}} = \mathbb{E}_{q_{-j}} \left[\log \tilde{p}(\mathbf{x}) \right] - \log q_{j} - 1 = 0$$

$$q_{j}^{*} \propto \exp \left\{ \mathbb{E}_{q_{-j}} \left[\log \tilde{p}(\mathbf{x}) \right] \right\}$$

Case study: Latent Dirichlet Allocation

Latent Dirichlet Allocation

Plate Diagram

Latent Dirichlet Allocation

Plate Diagram

LDA Inference

Bayesian Approach

LDA Inference

Bayesian Approach

Inference

Joint distribution

$$p(\cdot) = p(\alpha)p(\beta) \prod_{m}^{M} p(\theta_{m}|\alpha) \prod_{n=1}^{N_{m}} p(x_{mn}|z_{nm}, \{\phi_{k}\}_{k=1}^{K}) p(z_{nm}|\theta_{m}) \prod_{k}^{K} p(\phi_{k}|\beta)$$

Latent variables

$$\{\phi_k\}_{k=1}^K, \{z_{nm}\}, \{\theta_m\}$$

Posterior distribution

$$q(\cdot) = \prod_{k=1}^{K} p(\phi_k) \prod_{m=1} p(\theta_m) \prod_{n=1} p(z_{nm})$$

Let's work out one of the updates....

$$q(\theta_m) \propto \exp \left[\mathbb{E}_{\prod_n q(z_{nm})} \left[\log p(\theta_m | \alpha) \right] + \sum_n \log p(z_{nm} | \theta_m) \right]$$

In LDA:

Dirichlet:
$$p(\theta_m | \alpha) \propto \exp \left[\sum_{k=1}^K (\alpha_k - 1) \log \theta_{mk} \right]$$

Categorical:
$$p(z_{mn}|\theta_m) \propto \exp\left[\sum_{k=1}^K 1(z_{mn}=k)\log\theta_{mk}\right]$$

We Obtain:

$$q(\theta_m) \propto \exp\left[\sum_{k=1}^K \left(\sum_{n=1}^N q(z_{mn} = k) + \alpha_k - 1\right) \log \theta_{mn}\right]$$

Remember this:

$$q_j^* \propto \exp\{\mathbb{E}_{q_{-j}} [\log \tilde{p}(\mathbf{x})]\}$$

Advantages and Disadvantages

Disadvantages:

- An approximate posterior only not always
- Difficulty in optimisation can get stuck in guaranteed to find exact posterior in the limit. local minima.
- Typically under-estimates the variance of the posterior and can bias maximum likelihood parameter estimates.

Limited theory and guarantees for variational methods.

Advantages:

- Applicable to almost all probabilistic models: non-linear, non-conjugate, high-dimensional, directed and undirected.
- Can be **faster to converge** than competing methods.
- Easy convergence assessment.
- Numerically stable.
- Can be used on modern computing architectures (CPUs and GPUs).
- Principled and scalable approach for model selection.

Mean field vs LBP

- LBP minimizes the **Bethe** energy while MF maximizes the **ELBO**.
- LBP is exact for trees whereas MF is not, suggesting LBP will in general.
- LBP optimizes over node and edge marginals, whereas naïve MF only optimizes over node marginals, again suggesting LBP will be more accurate.
- MF objective has many more local optima than the LBP objective, so optimizing the MF objective seems to be harder.
- MF tends to be more overconfident than BP
- the advantage of MF is that it gives a lower bound on the partition function while for LBP we don't know the relationship.
- MF is easier to extend to other distributions besides discrete and Gaussian.