Approximate Inference Monte Carlo Methods

Kayhan Batmanghelich

Inferential Problems

Posterior
$$p(z|y) = \frac{ \begin{bmatrix} \text{Likelihood} \\ p(y|z) \end{bmatrix} \begin{bmatrix} \text{Prior} \\ p(z) \end{bmatrix} }{ \int p(y,z)dz}$$

Marginal likelihood/
Model evidence

Most inference problems will be one of:

Marginalisation

$$p(y) = \int p(y, \theta) d\theta$$

Expectation

$$\mathbb{E}[f(y)|x] = \int f(y)p(y|x)dy$$

Prediction

$$p(y_{t+1}) = \int p(y_{t+1}|y_t)p(y_t)dy_t$$

Approaches to inference

Exact inference algorithms

- The elimination algorithm
- Message-passing algorithm (sum-product, belief propagation)
- The junction tree algorithms

Approximate inference techniques

- Variational algorithms
 - Loopy belief propagation
 - Mean field approximation
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

Properties of Monte Carlo

Estimator:
$$\int f(x)P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)} [f(x)] = \operatorname{var}_{P(x)} [f(x)] / S$$

"Error bars" shrink like \sqrt{S}

A dumb approximation of π

$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi = 4 \iint \mathbb{I}\left((x^2 + y^2) < 1\right) P(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

```
octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
```

Aside: don't always sample!

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp's in 108 evaluations, machine precision in 2598.

(NB Matlab's quad1 fails at zero tolerance)

Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

$$h(y) = \int_{-\infty}^{y} p(y') \, \mathrm{d}y'$$

Draw mass to left of point: $u \sim \text{Uniform}[0,1]$

Sample,
$$y(u) = h^{-1}(u)$$

Rejection Sampling

Steps:

- Find Q(x) that is easy to sample from.
- Find k such that k such that:

$$\frac{\tilde{P}(x)}{kQ(x)} < 1$$

Sample auxiliary variable y

$$\mathbb{P}(y=1|x) = \frac{\tilde{P}(x)}{kQ(x)}$$

accept the sample with probability P(y=1|x)

<u>Claim</u>: Accepted samples have a probability of P(x). Does it matter how to choose k?

Pitfalls of Rejection Sampling

Rejection & importance sampling scale badly with dimensionality

Example:

$$P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})$$

the densities are fully factorizable in this example:

$$p(\mathbf{x}) = \prod_{i=1}^{D} p(x_i) \qquad q(\mathbf{x}) = \prod_{i=1}^{D} q(x_i)$$

The acceptance rate is:

$$q(y = 1|\mathbf{x}) = \prod_{i=1}^{D} \frac{p^*(x_i)}{M_i q(x_i)} = \prod_{i=1}^{D} q(y = 1|x_i) = O(\gamma^D)$$

Importance sampling

Computing $\tilde{P}(x)$ and $\tilde{Q}(x)$, then throwing x away seems wasteful Instead rewrite the integral as an expectation under Q:

$$\int f(x)P(x) dx = \int f(x)\frac{P(x)}{Q(x)}Q(x) dx, \qquad (Q(x) > 0 \text{ if } P(x) > 0)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

We switched the sampling from P(x) which is hard to sampling from Q(x).

Wait!! We still need to have $\frac{P(x^S)}{Q(x^S)}$.

Importance Sampling (2)

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/\mathcal{Z}_P$

$$\int_{x} f(x)p(x) = \frac{\int_{x} f(x)\frac{\tilde{p}(x)}{\tilde{q}(x)}q(x)}{\int_{x} \frac{\tilde{p}(x)}{\tilde{q}(x)}q(x)}$$

Let x^1, \dots, x^L be samples from q(x).

$$\int_{x} f(x)p(x) \approx \frac{\sum_{l} f(x^{l}) \frac{\tilde{p}(x^{l})}{\tilde{q}(x^{l})}}{\sum_{l} \frac{\tilde{p}(x^{l})}{\tilde{q}(x^{l})}} = \sum_{l=1}^{L} f(x^{l}) w_{l}$$

This estimator is consistent but biased

_What is the implication?

Exercise: Prove that
$$rac{Z_p}{Z_Q}pproxrac{1}{L}\sum_{L} ilde{w}_l$$

Pitfalls of Importance Sampling

Naïve importance sampling does not scale well with dimensionality

- The proposal distribution (q(x)) is a good one when p=q.
- In other words, weighs are uniform (w=1/L).
- Let's study variability of the unnormalized weights

$$u_i = p(\mathbf{x}^i)/q(\mathbf{x}^i)$$
$$\langle (u_i - u_j)^2 \rangle = \langle u_i^2 \rangle + \langle u_j^2 \rangle - 2 \langle u_i \rangle \langle u_j \rangle$$

Example: Fully factorizable p(x) and q(x):

$$\left\langle (u_i-u_j)^2 \right\rangle = 2 \left(\left\langle \frac{p(x)}{q(x)} \right\rangle_{p(x)}^D - 1 \right)$$

Pitfalls of Importance Sampling

```
interact(myPlot, log s=(-3,5,0.01), mu=(-8,8,0.5))
        X
                                            0.99
              log_s
                                            0.00
                mu
           -0.000294354607243
Out[11]: <function main .myPlot>
            0.5
            0.4
            0.3
            0.2
            0.1
            0.0
                                           2.5
                                                5.0
                                                     7.5
               -10.0
                     -7.5
                          -5.0
                               -2.5
                                     0.0
                                                          10.0
```

Pitfalls of Importance Sampling

A Remedy: A method that can help address this weight dominance is resampling.

How to use structure in high dim?

Apply the importance sampling to a temporal distribution $p(x_{1:t})$

General idea, change the proposal in each step: $q(x_t|x_{1:t})$

$$\begin{split} \tilde{w}_t^l &= \frac{p^*(x_{1:t}^l)}{q(x_{1:t}^l)} \\ &= \frac{p^*(x_t^l|x_{1:t-1}^l)}{q(x_t^l|x_{1:t-1}^l)} \frac{p^*(x_{1:t-1}^l)}{q(x_{1:t-1}^l)} \end{split}$$

How to use structure in high dim?

Apply the importance sampling to a temporal distribution $p(x_{1:t})$

General idea, change the proposal in each step: $q(x_t|x_{1:t})$

$$\begin{split} \tilde{w}_t^l &= \frac{p^*(x_{1:t}^l)}{q(x_{1:t}^l)} \\ &= \frac{p^*(x_t^l|x_{1:t-1}^l)}{q(x_t^l|x_{1:t-1}^l)} \frac{p^*(x_{1:t-1}^l)}{q(x_{1:t-1}^l)} \end{split}$$

$$x_1^{l+1} x_2^{l+1} \bullet \bullet \bullet x_{t-1}^{l+1} x_t^{l+1} \quad \begin{array}{c} \text{Sample} \\ l+1 \end{array}$$

The recursion rule:

$$\tilde{w}_t^l = \tilde{w}_{t-1}^l \alpha_t^l, \qquad t > 1$$

$$\alpha_t^l \equiv \frac{p^*(x_t^l | x_{1:t-1}^l)}{q(x_t^l | x_{1:t-1}^l)}$$

Sketch of Particle Filters

Apply the importance sampling to a temporal distribution $p(x_{1:t})$

General idea, change the proposal in each step: $q(x_t|x_{1:t})$

The recursion rule:

$$\tilde{w}_{t}^{l} = \tilde{w}_{t-1}^{l} \alpha_{t}^{l}, \qquad t > 1$$

$$\alpha_{t}^{l} \equiv \frac{p^{*}(x_{t}^{l} | x_{1:t-1}^{l})}{q(x_{t}^{l} | x_{1:t-1}^{l})}$$

$$\alpha_{t}^{l} \equiv \frac{p(v_{t}|h_{t}^{l})p(h_{t}^{l}|h_{t-1}^{l})}{q(h_{t}^{l}|h_{1:t-1}^{l})}$$

$$q(h_{t}|h_{1:t-1}) = p(h_{t}|h_{t-1})$$

$$\tilde{w}_{t}^{l} = \tilde{w}_{t-1}^{l}p(v_{t}|h_{t}^{l})$$

Sketch of Particle Filters

Apply the importance sampling to a temporal distribution $p(x_{1:t})$

General idea, change the proposal in each step: $q(x_t|x_{1:t})$

The recursion rule:

$$q(h_t|h_{1:t-1}) = p(h_t|h_{t-1})$$

$$\tilde{w}_t^l = \tilde{w}_{t-1}^l p(v_t | h_t^l)$$

Forward message:

$$\rho(h_t) \propto p(h_t|v_{1:t})$$

$$\rho(h_t) \propto p(v_t|h_t) \int_{h_{t-1}} p(h_t|h_{t-1}) \rho(h_{t-1})$$

$$\rho(h_{t-1}) \approx \sum_{l=1}^{L} w_{t-1}^l \delta\left(h_{t-1}, h_{t-1}^l\right)$$

 $\rho(h_t) \approx \frac{1}{Z} p(v_t | h_t) \sum_{i=1}^{L} p(h_t | h_{t-1}^l) w_{t-1}^l$

Summary so far

General ideas for the sampling approaches

- Proposal distribution (q(x)): Use another distribution to sample from.
 - Change the proposal distribution with the iterations.
- Introduce an auxiliary variable to decide keeping a sample or not.
 - Why should we discard samples?
- Sampling from high-dimension is difficult.
 - Let's incorporate the graphical model into our sampling strategy.
- Can we use the gradient of the p(x)?

Summary so far

General ideas for the sampling approaches

- Proposal distribution (q(x)): Use another distribution to sample from.
 - Change the proposal distribution with the iterations.
- Introduce an auxiliary variable to decide keeping a sample or not.
 - Why should we discard samples?
- Sampling from high-dimension is difficult.
 - Let's incorporate the graphical model into our sampling strategy.
- Can we use the gradient of the p(x)?

Sample one (block of) variable at the time

Link:

https://www.youtube.com/watch?v=AEwY6QXWoUg https://www.youtube.com/watch?v=ZaKwpVgmKTY

Ingredients for Gibb Recipe

Full conditionals only need to condition on the Markov **Blanket**

MRF

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

Sample one (block of) variable at the time

$$p(x) = p(x_i|x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

$$p(x_i|x_{\setminus i}) = \frac{1}{Z} p(x_i|\operatorname{pa}(x_i)) \prod_{\substack{j \in \operatorname{ch}(i) \\ \text{Markov Blanket}}} p(x_j|\operatorname{pa}(x_j))$$
Easy to compute

The proposal distribution:

$$q(x^{l+1}|x^l,i) = p(x_i^{l+1}|x_{\backslash i}^l) \prod_{j \neq i} \delta\left(x_j^{l+1},x_j^l\right) \prod_{\text{ivariables do not change}} \delta\left(x_j^l\right) \prod_{\text{iv$$

$$q(x^{l+1}|x^l) = \sum_i q(x^{l+1}|x^l, i)q(i),$$

Choose one of the variables randomly with probability q(i)

Again....

$$p(x_i|x_{\setminus i}) = \frac{1}{Z}p(x_i|\operatorname{pa}(x_i))\prod_{j\in\operatorname{ch}(i)}p(x_j|\operatorname{pa}(x_j))$$

Full conditionals only need to condition on the Markov Blanket

$$p(x_i|x_{\setminus i}) = \frac{1}{Z}p(x_i|pa(x_i)) \prod_{j \in ch(i)} p(x_j|pa(x_j))$$

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

Whiteboard

Gibbs Sampling as M-H

LDA Inference

Bayesian Approach

LDA Inference

Explicit Gibbs Sampler

LDA Inference

Collapsed Gibbs Sampler

Sampling

Goal:

- Draw samples from the posterior $p(Z|X,\alpha,\beta)$
- Integrate out topics ϕ and document-specific distribution over topics θ

Algorithm:

- While not done...
 - For each document, *m*:
 - For each word, n:
 - » Resample a single topic assignment using the full conditionals for z_{mn}

Sampling

- What queries can we answer with samples of z_{mn} ?
 - Mean of z_{mn}
 - Mode of z_{mn}
 - Estimate posterior over z_{mn}
 - Estimate of topics ϕ and document-specific distribution over topics θ

Full conditionals

$$p(z_{i} = j | z_{-i}, X, \alpha, \beta) \propto \frac{n_{-i,j}^{(x_{i})} + \beta}{n_{-i,j}^{(\cdot)} + T\beta} \frac{n_{-i,j}^{(d_{i})} + \alpha}{n_{-i,\cdot}^{(d_{i})} + K\alpha}$$

 $n_{-i,j}^{(x_i)}$ the number of instances of word x_i assigned to topic j, not including current word.

 $n_{-i,j}^{(\cdot)}$ total number of words assigned to topic j, not including the current one.

 $n_{-i,j}^{(d_i)}$ the number of words for document d_i assigned to topic j.

 $n_{-i,\cdot}^{(d_i)}$ total number of words in the document d_i not including the current one.

Sketch of the derivation of the full conditionals

$$p(z_{i} = k|Z^{-i}, X, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{p(X, Z|\boldsymbol{\alpha}, \boldsymbol{\beta})}{p(X, Z^{-i}|\boldsymbol{\alpha}, \boldsymbol{\beta})}$$

$$\propto p(X, Z|\boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= p(X|Z, \boldsymbol{\beta})p(Z|\boldsymbol{\alpha})$$

$$= \int_{\Phi} p(X|Z, \Phi)p(\Phi|\boldsymbol{\beta}) d\Phi \int_{\Theta} p(Z|\Theta)p(\Theta|\boldsymbol{\alpha}) d\Theta$$

$$= \left(\prod_{k=1}^{K} \frac{B(\vec{n}_{k} + \boldsymbol{\beta})}{B(\boldsymbol{\beta})}\right) \left(\prod_{m=1}^{M} \frac{B(\vec{n}_{m} + \boldsymbol{\alpha})}{B(\boldsymbol{\alpha})}\right)$$

$$p(z_{i} = j | z_{-i}, X, \alpha, \beta) \propto \frac{n_{-i,j}^{(x_{i})} + \beta}{n_{-i,j}^{(\cdot)} + T\beta} \frac{n_{-i,j}^{(d_{i})} + \alpha}{n_{-i,\cdot}^{(d_{i})} + K\alpha}$$

Algorithm

```
zero all count variables, n_m^{(k)}, n_m, n_k^{(t)}, n_k

for all documents m \in [1, M] do

for all words n \in [1, N_m] in document m do

sample topic index z_{m,n} = k \sim \text{Mult}(1/K)

increment document—topic count: n_m^{(k)} += 1

increment topic—term count: n_k^{(t)} += 1

increment topic—term sum: n_k += 1
```

Algorithm

```
// Gibbs sampling over burn-in period and sampling period
 while not finished do
        for all documents m \in [1, M] do
                for all words n \in [1, N_m] in document m do
                        // for the current assignment of k to a term t for word w_{m,n}:
decrement counts and ...

// multinomial sampling acc. to Eq. ...
sample topic index \tilde{k} \sim p(z_i | \vec{z}_{\neg i}, \vec{w})

// for the new assignment of z_{m,n} to the term t for word w_{m,n}:
increment counts and sums: n_m^{(\tilde{k})} += 1; n_m += 1; n_{\tilde{k}}^{(t)} += 1; n_{\tilde{k}} += 1
                       // multinomial sampling acc. to Eq. 78 (decrements from previous step):
```