Approximate Inference
Monte Carlo Methods

Kayhan Batmanghelich



Inferential Problems

) / p(y, 2)dz

Marginal likelihood/
Model evidence

Most inference problems will be one of:

p(0) = [ ply.0)dt
Elf Wl = [ Fp(ul)dy
poeer) = [ o l)p(ue)dy



Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
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Slide from lan Murray

Properties of Monte Carlo

S
Estimator: /f(x)P(:U) de ~ f = ! Zf(x(s)), %) ~ P(x)

Estimator is unbiased:

S
Ep ) [f] = %ZEP(:B) f(z)] = Ep)lf(z)]

Variance shrinks o« 1/5:
S
A 1
varp oy | | = D varp (@) = varpe) [f(2)] /S
s=1

“Error bars” shrink like v/S
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A dumb approximation of

1 O<z<l and O<y<l1
P@w%={

0 otherwise

w=4//Hmﬁ+y%<1ﬂ%uwdx@/

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=l1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
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Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast
octave:1> 4 * quadl(@(x) sqrt(1-x."2), 0, 1, tolerance)

Gives 7 to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)
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Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

hy) = [* _p(y) dy

Draw mass to left of point:
u ~ Uniform[0,1]

Sample, y(u) = h™1(u)

0

Figure from PRML, Bishop (2006) Yy

Although we can’t always compute and invert h(y)



Rejection Sampling

Steps:
* Find Q(x) that is easy to sample from.
* Find k such that k such that:

~

P(x)
, Q) <
» Sample auxiliary variable y
P
P(y = 1lo) = 1500

1(-%" u;)

» accept the sample with probability P(y=1|x)

1)

Claim: Accepted samples have a probability of P(x).
Does it matter how to choose k?
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Pitfalls of Rejection Sampling

Rejection & importance sampling scale badly with dimensionality

Example:

p(x) = 12, p(e)  a(x) =12, q(z:)

The acceptance rate is:

D
q(y = 1]x) :H

2:1
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Importance sampling

Computing P(z) and Q(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under Q):

/f(:c)P(a:) dz = /f(x)P(x)Q(x) dz, (Q(z) > 0 if P(z) > 0)
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We switched the sampling from P(x) which is hard to sampling
from Q(x).

S
Wait!! We still need to have Px)

Q(x%)
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Importance Sampling (2)

Previous slide assumed we could evaluate P(z) = P(z)/Zp

/f _Ja f (@) B q(x)

Let x1,---, x* be samples from q(x).

(xl)]’ﬁ'gmlg L
IRC =3 et
Zl Ej(xl) =1

——————————————————————————————————————

________________________________________
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Pitfalls of Importance Sampling

Naive importance sampling does not scale well with dimensionality

* The proposal distribution (q(x)) is a good one when p=q.

* In other words, weighs are uniform (w=1/L).
* Let’s study variability of the unnormalized weights

u; = p(x')/q(x")
((u =)y = (u2) + (uF) — 2 (ws) {u;)

Example: Fully factorizable p(x) and g(x):
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Pitfalls of Importance Sampling

interact (myPlot, log s=(-3,5,0.01]),mu=(-8,8,0.5))

log_s 0.99
R

mu 0.00
-0.000294354607243

Out[11l]: <function _ main_ .myPlot>
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Pitfalls of Importance Sampling

A Remedy: A method that can help address
this weight dominance is resampling.



How to use structure in high dim?

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x;|x1.t)

l

_ p*(xilfvﬁ:t_l) p*(xl:t—l

l

Q($i|$i:t—1) q(xlzt—l

= o = e e e = s e e s s s = P ="
P/ [ AN
R SO R Tt T
. l N 1
wt—l | I
wﬁ |
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How to use structure in high dim?

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x;|x1.t)

_ p* (xi|ma:t—1> p* (’Ig:t—l>

Q(lﬂfﬁi:t—l) Q(xllzt—l)
The recursion rule:

~1 ~1 l

Wy = Wy_1 0y, t>1

p* (] r]—1)
q(xi‘xa:t—l)

-
O{t:

i 1= == Sample
L1 Ty e s v Ty Ta oL
N |
) Wy [ :
wﬁ —>]
S R A A 141 741+ Sample
R S Bt 2 N SR B O
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Sketch of Particle Filters

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x;|x1.¢)

The recursion rule: @ @ @ @

~1 ~1 l

*( )
1 P (z¢l77.41)
th =
q(zt|2t, ;) @ @ @ @
p(ve|hl)p(hi|h,_,)
tq(hilh’ll:t—l) J
Q(ht|h1:t—1) = p(ht|ht—1)

~1 ~1 l
Wy = wt—lp(vt‘ht)

ol =
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Sketch of Particle Filters

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x¢|x1.¢+)
The recursion rule:
q(hilha:i—1) = p(he|hy—1) 0 @ @ @

~1 ~1 l
Wy = wt—lp(vt‘ht)

Forward message: m @ @ @

p(ht) o< p(ht|vi:t)
o(he) o p(vrlhe) [ p(helhelp(hes)| lzzu N\ é\
—0-0—0-00—O——O0-O—O0—0—

hi—1

L} | —

AT
p(hi-1) Zwt 10 (ht 1, Py 1) — T~ \\ >
I=1

v J \ \
v Yy  /

L
1
p(he) ~ —p(velhe) 3 plhlhl_y)w!_ *
=1
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Summary so far

General ideas for the sampling approaches

* Proposal distribution (gq(x)): Use another distribution
to sample from.
* (Change the proposal distribution with the
iterations.

* Introduce an auxiliary variable to decide keeping a
sample or not.
*  Why should we discard samples?

* Sampling from high-dimension is difficult.
* Let’sincorporate the graphical model into our
sampling strategy.

* (Can we use the gradient of the p(x)?
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Summary so far

General ideas for the sampling approaches

Proposal distribution (g(x)): Use another distribution

to sample from.

* (Change the proposal distribution with the
iterations.

Introduce an auxiliary variable to decide keeping a
sample or not.
*  Why should we discard samples?

Sampling from high-dimension is difficult.
* Let’sincorporate the graphical model into our
sampling strategy.

Can we use the gradient of the p(x)?
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» Sample one (b

L2

Gibbs Sampling

ock of) variable at the time

p(x)




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

Link:


https://www.youtube.com/watch?v=AEwY6QXWoUg
https://www.youtube.com/watch?v=ZaKwpVgmKTY

Figure from Jordan Ch. 21

Ingredients for Gibb Recipe

MRF

Full
conditionals
only need to
condition on
the Markov
Blanket

Bayes Net

* Must be “easy” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)
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Gibbs Sampling

. Sample one (block of) variable at the time

p(x) :|p(33'i|5517 y Lj—1s Lit-1y -« - In)il)(.flfl,.. s Lj—1s Ljt-1s -+« +y CIjn)

p(wilz\;) :% (zilpa(z:)) || p(@jlpa(z;)

/ j€ch(i)

Easy to compute

* The proposal distribution:
g(z |2t i) = p(a:l+1|:1:\z)'1:[_5_(_;;1,_ Zj' Make sure other
Ve ivariables do not change

o e!) = 3t ija(),
Choose one of the
variables randomly with
probability q(i)
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Again....

Figure from Jordan Ch. 21

p(xil2\;) = p@ilpa (@) T] pleslea ()

Jj€ch(z)

MRF

Full conditionals only
need to condition on the
Markov Blanket

Bayes Net

p(xila\;) = p@ilpa (@) T] pleslea ;)

j€ch(i)

* Must be “easy” to sample from conditionals

* Many conditionals are log-concave and are
amenable to adaptive rejection sampling

Inp(x)
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Whiteboard

* Gibbs Sampling as M-H



LDA Inference

* Bayesian Approach

Dirichlet

Document-specific
topic distribution

Intractable

Observed word

Dirichlet
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LDA Inference

* Explicit Gibbs Sampler

Dirichlet @

Dirichlet

Document-specific
topic distribution @ Topic
Topic assignment
Observed word ¢ @k\
v, K

®
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LDA Inference

* Collapsed Gibbs Sampler

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Dirichlet

®
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Sampling

Goal:
— Draw samples from the posterior p(Z|X, a, 3)

— Integrate out topics ¢ and document-specific
distribution over topics 6

Algorithm:

— While not done...
e For each document, m:
— For each word, n:

» Resample a single topic assignment using
the full conditionals forz,,,



Sampling

* What queries can we answer with samples
of Z,,1,?
— Meanofz,,
— Modeofz,,
— Estimate posterior overz,

— Estimate of topics ¢ and document-specific
distribution over topics 6



Gibbs Sampling for LDA

Full conditionals

p(zz — j‘z—iaXao‘aB) —Z,
() (d )
nl) . +TBn}) + Ka

(”3;?7 the number of instances of word x; assigned to topic j, not including current word.

() : . , ,
n_;; total number of words assigned to topic j, not including the current one.

n(d?). the number of words for document d; assigned to topicj.
J

n') " total number of words in the document d; not including the current one.

Z,



Gibbs Sampling for LDA

e Sketch of the derivation of the full

conditionals

p(z = k|27 X, o0, 8) = P21 0)

(X, Z 7|, B)
OCp(X,Z‘OC,,B)

— p(X|Z, B)p(Z|ex)

L p(X|Z,@)p(D|B) dd / p(Z10)p(O]ax) dO

©

K Bnk+,8 el B(ﬁm+a)
(7557 (I 5057

k=1 m=1

(%) ()
it B onlta
il 2%
p(zz—]\Z_Z,X,Oz,ﬁ) () —|—Tﬁn( )—|—Ka




Gibbs Sampling for LDA

Algorithm

// 1nitialisation

(k) (1)
k

zero all count variables, n,,”, n,,, n,", n

for all documents m € [1, M] do

for all words n € [1, N,,,] in document m do
sample topic index z,, ,=k ~ Mult(1/K)

increment document—topic count: n,(ff) +=1

increment document—topic sum: 7, +=1

(1)
k

increment topic—term sum: ny +=1

increment topic—term count: n,” +=1




Gibbs Sampling for LDA

Algorithm

// Gibbs sampling over burn-in period and sampling period

while not finished do

for all documents m € [1, M] do

for all words n € [1, N,,] in document m do

// for the current assignment of k to a term ¢ for word w,,:

decrement counts and sums: n,(f,f) —=1;n,, —=1; ng)

—= 1; ny —= 1

// multinomial sampling acc. to Eq. 78 (decrements from previous step):
sample topic index k ~ p(z;|Z.i, W)

// for the new assignment of z,, to the term ¢ for word wy,,:

increment counts and sums: n,(,,]f) +=1;n,, +=1; ”,E:) +=1;n; +=1




