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Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
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Recap: Rejection Sampling

Steps:
* Find Q(x) that is easy to sample from.
* Find k such that k such that:

~

P(x)
, Q) <
» Sample auxiliary variable y
P
P(y = 1lo) = 1500

» accept the sample with probability P(y=1|x)



Recap: Importance Sampling

Previous slide assumed we could evaluate P(z) = P(z)/Zp

/ i < %q(x)

pr

Let x1,---, x* be samples from q(x).




Recap: Particle Filters

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x;|x1.¢)

The recursion rule: @ @ @ @
q(hilhii—1) = p(he|hi—1)
~1 l
wy = Wy_yp(ve|hy)

Forward message: e @ @ @

p(ht) < p(ht|v1:t)
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Summary so far

General ideas for the sampling approaches

* Proposal distribution (gq(x)): Use another distribution
to sample from.
* (Change the proposal distribution with the
iterations.

* Introduce an auxiliary variable to decide keeping a
sample or not.
*  Why should we discard samples?

* Sampling from high-dimension is difficult.
* Let’sincorporate the graphical model into our

sampling strategy.

* (Can we use the gradient of the p(x)?
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Random Walks of the Annoying Fly

P(Tip1 =tz = J) = My
0.7 0.5 0]

0.3 0.3 0.5
0 02 05

Stationary distribution:
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‘e = \ Eigen vector of the

Markov matrix



GIBBS SAMPLING



» Sample one (b

L2

Gibbs Sampling

ock of) variable at the time

p(x)




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

Link:


https://www.youtube.com/watch?v=AEwY6QXWoUg
https://www.youtube.com/watch?v=ZaKwpVgmKTY

Figure from Jordan Ch. 21
Ingredients for Gibb Recipe

MRF Bayes Net

Full
conditionals
only need to
condition on
the Markov
Blanket

* Must be “easy” to sample
from conditionals

Inp(x)
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Gibbs Sampling

. Sample one (block of) variable at the time

p(x) :|p(331'|$17 y Lj—1s Lit-1y -« - xn)b(xlv" s Lj—1s Ljt-1s -+« +y xn)

Easy to compute

* The proposal distribution:
gz 2! 0) = p($l+1|:1:\z)'1:[_5_(_§:1,_ _55' Make sure other
Ve ivariables do not change

o e!) = 3t ija(0),
Choose one of the
variables randomly with
probability q(i)
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Figure from Jordan Ch. 21

Again....

p(xil2\;) = p@ilpa (@) T] pleslea ()

j€ch(i)

MRF Bayes Net
Full conditionals only
need to condition on the
Markov Blanket

p(xila\;) = p@ilpa (@) T] pleslea ;)

j€Ech(z)

* Must be “easy” to sample from conditionals )

* Many conditionals are log-concave and are
amenable to adaptive rejection sampling




Whiteboard

* Gibbs Sampling as M-H



Case Study: LDA



LDA Inference

* Bayesian Approach

Dirichlet

Document-specific
topic distribution

Intractable

Observed word

Dirichlet
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LDA Inference

* Explicit Gibbs Sampler

Dirichlet @

Dirichlet

Document-specific
topic distribution @ Topic
Topic assignment
Observed word ¢ @k\
v, K

®
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LDA Inference

* Collapsed Gibbs Sampler

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Dirichlet

®
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Sampling

Goal:
— Draw samples from the posterior p(Z|X, a, 3)

— Integrate out topics ¢ and document-specific
distribution over topics 6

Algorithm:

— While not done...
e For each document, m:
— For each word, n:

» Resample a single topic assignment using
the full conditionals forz,,,



Sampling

* What queries can we answer with samples
of Z,,1,?
— Meanofz,,
— Modeofz,,
— Estimate posterior overz,

— Estimate of topics ¢ and document-specific
distribution over topics 6



Gibbs Sampling for LDA

Full conditionals

p(zz — j‘z—iaXao‘aB) —Z,
() (d )
nl) . +TBn}) + Ka

(”3;?7 the number of instances of word x; assigned to topic j, not including current word.

() : - , ,
n_;; total number of words assigned to topic j, not including the current one.

n(d?). the number of words for document d; assigned to topicj.
J

n') " total number of words in the document d; not including the current one.

Z,



Gibbs Sampling for LDA

e Sketch of the derivation of the full

conditionals

p(z = k|27 X, o0, 8) = P21 0)

(X, Z 7|, B)
OCp(X,Z‘OC,,B)
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Definitions and Theoretical Justification for MCMC

MARKOV CHAINS
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MCMC

* Goal: Draw approximate, correlated samples
from a target distribution p(x)

e MCMC: Performs a biased random walk to
explore the distribution



Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:


https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Metropolis-Hastings Sampling

* Consider this mixture for the proposal

(1) = a0 f )+ 8lats) (1= [ )" 0))

Stay where you
are Or....

Sample from'a distribution

depends on current location (x)
Of course! It should be a proper density!

!

Choose between those options with a
probability that depends on a proposed point
and current point (0 < f(x',x) < 1)
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Metropolis-Hastings Sampling

* Consider this mixture for the proposal

o(#'2) = 40 2) + 8(0) (1= [ e o) (e 2) )
* Isit a proper density?

[ awio)= [ a0 a+1- [ a6 sate) =

CL'N



Metropolis-Hastings Sampling
* Consider this mixture for the proposal

(&) = 1 [0)f ' 2) + 00’ ,2) (1= [ ata'lo)fa") )

* How to choose f(x',x) and §(x'|x)?

p(x) must be the

/
Stationary distribution — /xq(x |CE’)p(CL’)
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Designing f(x', x)

* MH acceptance function:

f(«! ) = min <1’ ci(wlw’)p(x’))

q(x'|z)p(z)



Designing f(x’, x)

* MH acceptance function:

f(@ ) = min (1, @<w\x'>p<x'>>

q(r'|z)p(x)

e Detailed Balance:

f(@, x)q(2'|o)p(z) = f(z,2")q(x]a")p(2)



Detailed Balance
f(@', 2)q(@'|x)p(x) = f(z,2")q(z|2")p(x’)

Detailed balance means that, for each pair of
states x and x’,

arriving at x then x” and arriving at x’ then x
are equiprobable.
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Figure from Bishop (2006)

A choice for g(x'|x)

For Metropolis-Hastings, a generic proposal

distribution is: Q(Zlf‘ilf(t)) _ N(O, 62)

If € is large, many rejections
If € is small, slow mixing
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Figure from Bishop (2006)

A choice for g(x'|x)

* For Rejection Sampling, the accepted samples
are are independent

* But for Metropolis-Hastings, the samples are
correlated

* Question: How long must we wait to get
effectively independent samples?




10:
11:
12:
13:
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Metropolis-Hastings Algorithm

-1 ‘xcand)

p(z

. Choose a starting point x!.
: fort =2 to L do
Draw a candidate sample 2°"? from the proposal G(z'|z!~1).

Let ¢ = 42

cand)

else

else

end if
end if
end for

l

=

q(xcand‘xl—l)p(xl—l)
if @ > 1 then 2! = geand

draw a random value u uniformly from the unit interval [0, 1].
if u<a thenz

cand

39



Practical Issues

* Question: Is it better to move along one dimension
or many?

* Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time

— Q: Given a sequence of 1D proposals, compare rate of
movement for one-at-a-time vs. concatenation.

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?



Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
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Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
in’”) since the chain might not yet have mixed

*—0—0—0—0—0—0—0—0

®—0—0—0—@® - Answer:Oftenabalanceis

best:

._>._)‘_>._>. — Compared to one long chain:

More independent samples
- — Compared to many small

e chains: Less samples
discarded for burn-in

‘—)‘—)‘ — We can still parallelize

. - . s . — Allows us to assess mixing
by comparing chains
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