MCMC and Gibbs Sampling

Kayhan Batmanghelich

Approaches to inference

Exact inference algorithms

- The elimination algorithm
- Message-passing algorithm (sum-product, belief propagation)
- The junction tree algorithms

Approximate inference techniques

- Variational algorithms
 - Loopy belief propagation
 - Mean field approximation
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

Recap: Rejection Sampling

Steps:

- Find Q(x) that is easy to sample from.
- Find k such that k such that:

$$\frac{\tilde{P}(x)}{kQ(x)} < 1$$

Sample auxiliary variable y

$$\mathbb{P}(y=1|x) = \frac{\tilde{P}(x)}{kQ(x)}$$

accept the sample with probability P(y=1|x)

Recap: Importance Sampling

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/\mathcal{Z}_P$

$$\mathbb{E}_{x \sim p} \left[f(x) \right] = \int_{x} f(x) p(x) = \frac{\int_{x} f(x) \frac{p(x)}{\tilde{q}(x)} q(x)}{\int_{x} \frac{\tilde{p}(x)}{\tilde{q}(x)} q(x)}$$

Let x^1, \dots, x^L be samples from q(x).

$$\int_{x} f(x)p(x) \approx \frac{\sum_{l} f(x^{l}) \tilde{\underline{p}}(x^{l})}{\sum_{l} \frac{\tilde{\underline{p}}(x^{l})}{\tilde{q}(x^{l})}} = \sum_{l=1}^{L} f(x^{l}) w_{l}$$

Recap: Particle Filters

Apply the importance sampling to a temporal distribution $p(x_{1:t})$

General idea, change the proposal in each step: $q(x_t|x_{1:t})$

The recursion rule:

$$q(h_t|h_{1:t-1}) = p(h_t|h_{t-1})$$

$$\tilde{w}_t^l = \tilde{w}_{t-1}^l p(v_t | h_t^l)$$

Forward message:

$$\rho(h_t) \propto p(h_t|v_{1:t})$$

$$\rho(h_t) \propto p(v_t|h_t) \int_{h_{t-1}} p(h_t|h_{t-1}) \rho(h_{t-1})$$

$$\rho(h_t) \approx \frac{1}{Z} p(v_t | h_t) \sum_{l=1}^{L} p(h_t | h_{t-1}^l) w_{t-1}^l$$

Summary so far

General ideas for the sampling approaches

- Proposal distribution (q(x)): Use another distribution to sample from.
 - Change the proposal distribution with the iterations.
- Introduce an auxiliary variable to decide keeping a sample or not.
 - Why should we discard samples?
- Sampling from high-dimension is difficult.
 - Let's incorporate the graphical model into our sampling strategy.
- Can we use the gradient of the p(x)?

Summary so far

General ideas for the sampling approaches

- Proposal distribution (q(x)): Use another distribution to sample from.
 - Change the proposal distribution with the iterations.
- Introduce an auxiliary variable to decide keeping a sample or not.
 - Why should we discard samples?
- Sampling from high-dimension is difficult.
 - Let's incorporate the graphical model into our sampling strategy.
- Can we use the gradient of the p(x)?

Random Walks of the Annoying Fly

$$p(x_{t+1} = i | x_t = j) = M_{ij}$$

$$\begin{bmatrix} 0.7 & 0.5 & 0 \\ 0.3 & 0.3 & 0.5 \\ 0 & 0.2 & 0.5 \end{bmatrix}$$

Stationary distribution:

$$Mv_{\infty}=\underbrace{v_{\infty}}_{ ext{Eigen vector of the}}$$

Exploiting the structure

GIBBS SAMPLING

Sample one (block of) variable at the time

Link:

https://www.youtube.com/watch?v=AEwY6QXWoUg https://www.youtube.com/watch?v=ZaKwpVgmKTY

Ingredients for Gibb Recipe

Full conditionals only need to condition on the Markov Blanket

 Must be "easy" to sample from conditionals

Sample one (block of) variable at the time

$$p(x) = p(x_i|x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

$$p(x_i|x_{\setminus i}) = \frac{1}{Z} p(x_i|\operatorname{pa}(x_i)) \prod_{\substack{i \in \operatorname{ch}(i) \\ \text{Markov Blanket}}} p(x_j|\operatorname{pa}(x_j))$$

$$q(x^{l+1}|x^l, i) = p(x_i^{l+1}|x^l_{\setminus i}) \prod_{\substack{i \neq i \\ j \neq i}} \delta\left(\overline{x_j^{l+1}}, x_j^l\right) \prod_{\substack{i \in \operatorname{ch}(i) \\ \text{Make sure other}}} Make sure other variables do not charge the variables randomly with probability q(i)}$$

Again....

$$p(x_i|x_{\setminus i}) = \frac{1}{2} p(x_i|\operatorname{pa}(x_i)) \prod_{j \in \operatorname{ch}(i)} p(x_j|\operatorname{pa}(x_j))$$

Full conditionals only need to condition on the Markov Blanket

$$p(x_i|x_{\setminus i}) = \frac{1}{Z} p(x_i|pa(x_i)) \prod_{j \in ch(i)} p(x_j|pa(x_j))$$

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

Whiteboard

 The stationary distribution for the Gibbs Sampling is the true distribution

$$\int_{0}^{\infty} \frac{1}{2\pi} \int_{0}^{\infty} \frac$$

Case Study: LDA

LDA Inference

Bayesian Approach

LDA Inference

Explicit Gibbs Sampler

LDA Inference

Collapsed Gibbs Sampler

Sampling

Goal:

- Draw samples from the posterior $p(Z|X,\alpha,\beta)$
- Integrate out topics ϕ and document-specific distribution over topics θ

Algorithm:

- While not done...
 - For each document, *m*:
 - For each word, n:
 - » Resample a single topic assignment using the full conditionals for z_{mn}

Sampling

- What queries can we answer with samples of z_{mn} ?
 - Mean of z_{mn}
 - Mode of z_{mn}
 - Estimate posterior over z_{mn}
 - Estimate of topics ϕ and document-specific distribution over topics θ

Gibbs Sampling for LDA

Full conditionals

$$p(z_{i} = j | z_{-i}, X, \alpha, \beta) \propto \frac{n_{-i,j}^{(x_{i})} + \beta}{n_{-i,j}^{(\cdot)} + T\beta} \frac{n_{-i,j}^{(d_{i})} + \alpha}{n_{-i,\cdot}^{(d_{i})} + K\alpha}$$

 $n_{-i,j}^{(x_i)}$ the number of instances of word x_i assigned to topic j, not including current word.

 $n_{-i,j}^{(\cdot)}$ total number of words assigned to topic j, not including the current one.

 $n_{-i,j}^{(d_i)}$ the number of words for document d_i assigned to topic j.

 $n_{-i,\cdot}^{(d_i)}$ total number of words in the document d_i not including the current one.

Gibbs Sampling for LDA

Sketch of the derivation of the full conditionals

$$p(z_{i} = k|Z^{-i}, X, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \underbrace{\frac{p(X, Z|\boldsymbol{\alpha}, \boldsymbol{\beta})}{p(X, Z^{-i}|\boldsymbol{\alpha}, \boldsymbol{\beta})}}_{p(X, Z^{-i}|\boldsymbol{\alpha}, \boldsymbol{\beta})}$$

$$\propto p(X, Z|\boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= p(X|Z, \boldsymbol{\beta})p(Z|\boldsymbol{\alpha})$$

$$= \underbrace{\left(\prod_{k=1}^{K} \frac{B(\vec{n}_{k} + \boldsymbol{\beta})}{B(\boldsymbol{\beta})}\right) \left(\prod_{m=1}^{M} \frac{B(\vec{n}_{m} + \boldsymbol{\alpha})}{B(\boldsymbol{\alpha})}\right)}_{B(\boldsymbol{\alpha})}$$

$$p(z_{i} = j | z_{-i}, X, \alpha, \beta) \propto \frac{n_{-i,j}^{(x_{i})} + \beta}{n_{-i,j}^{(\cdot)} + T\beta} \frac{n_{-i,j}^{(d_{i})} + \alpha}{n_{-i,\cdot}^{(d_{i})} + K\alpha}$$

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

MCMC

- Goal: Draw approximate, correlated samples from a target distribution p(x)
- MCMC: Performs a biased random walk to explore the distribution

Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs Sampling, and Hamiltonian MCMC:

https://www.youtube.com/watch?v=Vv3foQNWvWQ

Metropolis-Hastings Sampling

Consider this mixture for the proposal

Choose between those options with a probability that depends on a proposed point and current point $(0 \le f(x', x) \le 1)$

Metropolis-Hastings Sampling

Consider this mixture for the proposal

$$q(x'|x) = \tilde{q}(x'|x)f(x',x) + \delta(x',x) \left(1 - \int_{x''} \tilde{q}(x''|x)f(x'',x)\right)$$

Is it a proper density?

$$\int_{x'} q(x'|x) = \int_{x'} \tilde{q}(x'|x) f(x',x) + 1 - \int_{x''} \tilde{q}(x''|x) f(x'',x) = 1$$

Metropolis-Hastings Sampling

• Consider this mixture for the proposal
$$q(x'|x) = \tilde{q}(x'|x)f(x',x) + \delta(x',x) \left(1 - \int_{x''} \tilde{q}(x''|x)f(x'',x)\right)$$

• How to choose f(x', x) and $\tilde{q}(x'|x)$?

Stationary distribution
$$p(x') = \int_x q(x'|x)p(x)$$

$$\int_x \tilde{q}(x'|x)f(x',x)p(x) = \int_x \tilde{q}(x|x')f(x,x')p(x')$$

Designing f(x', x)

$$\int_{x} \tilde{q}(x'|x) f(x',x) p(x) = \int_{x} \tilde{q}(x|x') f(x,x') p(x')$$

MH acceptance function:

$$f(x',x) = \min\left(1, \frac{\tilde{q}(x|x')p(x')}{\tilde{q}(x'|x)p(x)}\right)$$

$$\min(1, \frac{\tilde{p}(x)}{\tilde{q}(x'|x)p(x)})$$

$$\min(1, \frac{\tilde{p}(x)}{\tilde{p}(x')}) = \min(1, \frac{\tilde{p}(x)}{\tilde{p}(x')})$$

Designing f(x', x)

MH acceptance function:

$$f(x',x) = \min\left(1, \frac{\tilde{q}(x|x')p(x')}{\tilde{q}(x'|x)p(x)}\right)$$

$$f(x',x)\tilde{q}(x',x) P(x) = \min\left(\tilde{q}(x'|x)P(x)\right)$$
Detailed Balance:
$$\tilde{q}(x|x')p(x')$$

$$f(x',x)\tilde{q}(x'|x)p(x) = f(x,x')\tilde{q}(x|x')p(x')$$

Detailed Balance

$$f(x',x)\tilde{q}(x'|x)p(x) = f(x,x')\tilde{q}(x|x')p(x')$$

Detailed balance means that, for each pair of states x and x',

arriving at x then x' and arriving at x' then x

A choice for q(x'|x)

- For Metropolis-Hastings, a generic proposal distribution is: $q(x|x^{(t)}) = \mathcal{N}(0, \epsilon^2)$
- If ϵ is large, many rejections
- If ϵ is small, slow mixing

A choice for q(x'|x)

- For Rejection Sampling, the accepted samples are are independent
- But for Metropolis-Hastings, the samples are correlated
- Question: How long must we wait to get effectively independent samples?

Metropolis-Hastings Algorithm

```
1: Choose a starting point x^1.
 2: for i=2 to L do
         Draw a candidate sample x^{cand} from the proposal \tilde{q}(x'|x^{l-1}).
 3:
         Let a = \frac{\tilde{q}(x^{l-1}|x^{cand})p(x^{cand})}{\tilde{q}(x^{cand}|x^{l-1})p(x^{l-1})}
 4:
         if a > 1 then x^l = x^{cand}
 5:
         else
 6:
             draw a random value u uniformly from the unit interval [0,1].
 7:
             if u < a then x^l = x^{cand}
 8:
            else
 9:
               x^l = x^{l-1}
10:
             end if
11:
         end if
12:
13: end for
```

 Question: Is it better to move along one dimension or many?

- Answer: For Metropolis-Hasings, it is sometimes better to sample one dimension at a time
 - Q: Given a sequence of 1D proposals, compare rate of movement for one-at-a-time vs. concatenation.
- Answer: For Gibbs Sampling, sometimes better to sample a block of variables at a time
 - Q: When is it tractable to sample a block of variables?

- **Question:** How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods

- the Mark
- Answer:
 - Compar
 - Ex: Com

dent chains

CMC steps

- Question: Is one long Markov chain better than many short ones?
- Note: typical to discard initial samples (aka. "burn-in") since the chain might not yet have mixed

 Allows us to assess mixing by comparing chains