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Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques

Variational algori
Loopy belief prop

e Stochastic simulation / sampling methods

e Markov chain Monte Carlo methods
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Recap: Rejection Sampling

Steps:
* Find Q(x) that is easy to sample from.
* Find k such that k such that:

~* Sample auxiliary variable'y

~

P(z)

Py = 1]z) =

kQ(x)

» accept the sample with probability P(y=1|x)



Recap: Importance Sampling

Previous slide assumed we could evaluate P(z) = P(z)/Zp
< V(@)
a:rvp f )

Let x1,---, x* be samples from q(x).




Recap: Particle Filters

Apply the importance sampling to a temporal distribution p(x4.;)

General idea, change the proposal in each step: q(x;|x1.¢)

The recursion rule: @ @ @ @
q(hilhii—1) = p(he|hi—1)
~1 l
wy = Wy_yp(ve|hy)

Forward message: e @ @ @

p(ht) < p(ht|v1:t)
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Summary so far

General ideas for the sampling approaches

* Proposal distribution (gq(x)): Use another distribution
to sample from.
* (Change the proposal distribution with the
iterations.

* Introduce an auxiliary variable to decide keeping a
sample or not.
*  Why should we discard samples?

* Sampling from high-dimension is difficult.
* Let’sincorporate the graphical model into our

sampling strategy.

* (Can we use the gradient of the p(x)?
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Random Walks of the Annoying Fly
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GIBBS SAMPLING



Gibbs Sampling

» Sample one (block of) variable at the time
L2




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

Link:


https://www.youtube.com/watch?v=AEwY6QXWoUg
https://www.youtube.com/watch?v=ZaKwpVgmKTY

Figure from Jordan Ch. 21
Ingredients for Gibb Recipe

MRF Bayes Net

Full

conditionals

only need to

condition on "
the Markov

Blanket

* Must be “easy” to sample
from conditionals

Inp(x)
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Gibbs Sampling

. Sample one (block of) variable at the time

( ‘/‘Qx p(:ca:\)/%é:__—g’/jmppﬂ
Easy to comput o j
Cgc@al distribution:

l+1|$ Z

Make sure other

z+1|$ Zq($z+1|x ?
/\-—\/—/‘ -—
3 Choo%e one of the

variables randomly with
probability q(i)
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Figure from Jordan Ch. 21

Again....
p(xi|2\;) —@pa(wz [ »ilpaz)) \
Jj€ch(z)

MRF Bayes Net
Full conditionals only
need to condition on the
Markov Blanket

j€Ech(z)

p(zi|z\;) @(xipam)) 1 2(slpaz;)

* Must be “easy” to sample from conditionals )

* Many conditionals are log-concave and are
amenable to adaptive rejection sampling




Whiteboard

* The stationary distribution for the Gibbs
Sampling is the true distribution

e
é:— q(x‘t-f [1)
Am; POy 2t G at) Py
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Case Study: LDA



LDA Inference

* Bayesian Approach

Dirichlet

Document-specific
topic distribution

Intractable

Observed word

Dirichlet
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LDA Inference

* Explicit Gibbs Sampler

Dirichlet C%D

Dirichlet

Document-specific
topic distribution @ Topic
Topic assignment
Observed word ¢ @k\
v, K

Ca
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LDA Inference

* Collapsed Gibbs Sampler

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Dirichlet

®
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Sampling

Goal:
— Draw samples from the posterior p(Z|X, a, 3)

— Integrate out topics ¢ and document-specific
distribution over topics 6

Algorithm:

— While not done...
e For each document, m:
— For each word, n:

» Resample a single topic assignment using
the full conditionals forz,,,



Sampling

* What queries can we answer with samples
of Z,,1,?
— Meanofz,,
— Modeofz,,
— Estimate posterior overz,

— Estimate of topics ¢ and document-specific
distribution over topics 6



Gibbs Sampling for LDA

Full conditionals

n_ J _|_ 5 i (d;’)J T Q

p(zz — j‘z—iaXao‘aB)

n)  + T + Ka
Y Y /
i

(”3%) the number of instances of word x; assigned to topic j, not including current word.

—1%,]

() , - , ,
n_i; total number of words assigned to topic j, not including the current one.

n(_d; )7. the number of words for document d; assigned to topic j.

n') " total number of words in the document d; not including the current one.

Z,
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Gibbs Sampling for LDA

e Sketch of the derivation of the full
conditionals
(o(X. Zla. B))
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Definitions and Theoretical Justification for MCMC

MARKOV CHAINS



MCMC

* Goal: Draw approximate, correlated samples
from a target distribution p(x)

e MCMC: Performs a biased random walk to
explore the distribution



Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:


https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Metropolis-Hastings Sampling
* Consider this mixturfr the proposal

dL

q(x'|z) = (', o)+ 6(2’, = (1—/” c’j(w”|x)f(x”,x))

/ Stay where you

areOr....

Sample from'a distribution

depends on current location (x)
Of course! It should be a proper density!

!

Choose between those options with a
probability that depends on a proposed point
and current point (0 < f(x',x) < 1)
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Metropolis-Hastings Sampling

* Consider this mixture for the proposal

('le) = (1)) 1—/ (" |x)f

* Isitaproper denSIty

/w, q(z'|z) = /x, §($,|:E)/f(/g/ 11 _/ ,,|/)K/




Metropolis-Hastings Sampling

 Consider this mixture for the Q,Eosal

* How to chogse f(x ,x) and g(x |x)? Ml{;—

e —

R () = [ @ |2)p(a)
~ T S—
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.ADesigning f(x', x)

* MH acceptance function:

— min (@‘IW m)

S——
w\in(\/ =

) pPx) _ 2
N\v\< (/ P(ﬁ))/m Q(If()
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Designing f(x’, x)

* MH acceptance function:

: (56\37) (ZU'))
f(z',x) = min |1, >

_— L | L
][(’111)?(1'1) ) = "‘““"C ("L \’X)?@k))
* Detailed Batance: A O E? D)
A s

(@' x)q(a'[x)p(x) = f(z,2")q(x]a")p(z’)
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Detailed Balance
f(@', 2)q(@'|x)p(x) = f(z,2")q(z|2")p(x’)

Detailed balance means that, for each pair of
states x and x’,

arriving at x then x” and arriving at x’ then x
are equiprobable.
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Figure from Bishop (2006)

A choice for g(x'|x)

For Metropolis-Hastings, a generic proposal

distribution is: Q(Zlf‘ilf(t)) _ N(O,/Eﬁ)

If € is large, many rejections
If € is small, slow mixing
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Figure from Bishop (2006)

A choice for g(x'|x)

For Rejection Sampling, the accepted samples
are are independent

But for Metropolis-Hastings, the samples are
correlated

Question: How long must we wait to get
effectively independent samples?
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Metropolis-Hastings Algorithm

-1 ‘xcand)

p(z

. Choose a starting point x!.
: fort =2 to L do
Draw a candidate sample 2°"? from the proposal G(z'|z!~1).

Let ¢ = 42

cand)

else

else

end if
end if
end for

l

=

q(xcand‘xl—l)p(xl—l)
if @ > 1 then 2! = geand

draw a random value u uniformly from the unit interval [0, 1].
if u<a thenz

cand
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Practical Issues

* Question: Is it better to move along one dimension
or many?

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?
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Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2
A A
o T po
o) o)
o o)
£ £
o] 0
A A
00 00
o o)
-1 1
>

# of MCMC steps # of MCMC steps
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Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
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Practical Issues

Bayesian Data Analysis
Third Edition

Relative Number of Births

Slow trend
Fast non-periodic component
Mean
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David B. Dunson, Aki Vehtari, and Donald B. Rubin




Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
in’”) since the chain might not yet have mixed

*—0—0—0—0—0—0—0—0

®—0—0—0—@® - Answer:Oftenabalanceis

best:

._>._)‘_>._>. — Compared to one long chain:

More independent samples
- — Compared to many small

e chains: Less samples
discarded for burn-in

‘—)‘—)‘ — We can still parallelize

. - . s . — Allows us to assess mixing
by comparing chains

‘_>‘_>‘ 46



