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Recap: Rejection Sampling

Steps:
* Find Q(x) that is easy to sample from.
* Find k such that k such that:

~

P(x)
, Q) <
» Sample auxiliary variable y
P
P(y = 1lo) = 1500

» accept the sample with probability P(y=1|x)



Recap: Gibbs Sampling




Figure from Jordan Ch. 21

Ingredients for Gibb Recipe

p(xi]a\;) = p(ailpa (@) ] plaslpa )

Jj€ch(z)
MRF Bayes Net
Full conditionals only

need to condition on the
Markov Blanket

p(xila\;) = p@ilpa (@) T] pleslea ;)

j€ch(z)

* Must be “easy” to sample from conditionals )

* Many conditionals are log-concave and are
amenable to adaptive rejection sampling




Recap: Metropolis-Hastings

For Metropolis-Hastings, a generic proposal

distribution is: Q(Zlf‘ilf(t)) _ N(O, 62)

If € is large, many rejections
If € is small, slow mixing




Recap: Detailed Balance
f(a',2)q(2|a)p(x) = f(z,2")q(z]z")p(a’)

Detailed balance means that, for each pair of
states x and x’,

arriving at x then x” and arriving at x’ then x
are equiprobable.




Recap: Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps



Recap: Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
in’”) since the chain might not yet have mixed

*—0—0—0—0—0—0—0—0

®—0—0—0—@® - Answer:Oftenabalanceis

best:

._>._)‘_>._>. — Compared to one long chain:

More independent samples
— Compared to many small

e chains: Less samples
discarded for burn-in

‘—)‘—)‘ — We can still parallelize

. - . s . — Allows us to assess mixing
by comparing chains




Summary so far

General ideas for the sampling approaches

* Proposal distribution (gq(x)): Use another distribution
to sample from.
* (Change the proposal distribution with the
iterations.

* Introduce an auxiliary variable to decide keeping a
sample or not.
*  Why should we discard samples?

* Sampling from high-dimension is difficult.
* Let’sincorporate the graphical model into our
sampling strategy.

* (Can we use the gradient of the p(x)?

10




MCMC (AUXILIARY VARIABLE
METHODS)



Slide from lan Murray

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:

/f(a:) dx—/f ) da dv

1
QEZf(CC(S)% QC,UNP(CC,U)
s=1

We might want to do this if

e P(x|v) and P(v|x) are simple

e P(x,v) is otherwise easier to navigate
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Auxiliary variables

Consider drawing samples from p(x). For an auxiliary
variable y we introduce a distribution p(y|x) to form the joint

distribution:

p(z,y) = p(y|lx)p(z)

* If we sampled x directly from p(x) and then y from p(y|x),

introducing y is pointless!
* To be useful, therefore, the auxiliary variable must

influence how we sample x.
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Slice Sampling

e Motivation:

— Want samples from p(x) and don’t know the
normalizer Z

— Choosing a proposal at the correct scale is difficult
* Properties:

— Similar to Gibbs Sampling: one-dimensional
transitions in the state space

— Similar to Rejection Sampling: (asymptotically) draws
samples from the region under the curve

i) A
— An MCMC method with an adaptive proposal




Slice sampling idea

By introducing the auxiliary variable y and defining the
distribution

[ 1/Z for 0 <y < p*(z)
p(e,y) = { 0 otherwise

White Board: Prove that the marginal of p(x, y) over y is equal
to the distribution we wish to draw samples from.
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Slide from lan Murray

Slice sampling idea

Sample point uniformly under curve P(z)  P(z)

This is just an
auxiliary-variable
Gibbs Sampler!

p(u|z) = Uniform[0, P(z)]

y

1 Plz)>u

0O otherwise

= “Uniform on the slice”

p(z|u) o {
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Algorithm

Slice Sampling
Goal: sample (z,u) given (v, 2®).

Part 1: Stepping Out

Sample interval (7, ;) enclosing z(*).

Expand until endpoints are ”outside” region under curve.

Part 2: Sample x (Shrinking)

Draw z from within the interval (x;,z,), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u®, z®).
u ~ Uniform (0, p(z*)
Part 1: Stepping Out
Sample interval (7, ;) enclosing z(*).
r ~ Uniform(u, w)
(z1,20) = (2 —r,2® +w —7)
Expand until endpoints are ”outside” region under curve.
while(p(x;) > u){z; = x; — w}
while(p(z,) > u){x, =z, + w}
Part 2: Sample x (Shrinking)

Draw z from within the interval (x;,z,), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u®, z®).
u ~ Uniform (0, p(z*)
Part 1: Stepping Out
Sample interval (7, ;) enclosing z(*).
r ~ Uniform(u, w)
(z1,20) = (2 —r,2® +w —7)
Expand until endpoints are ”outside” region under curve.
while(p(x;) > u){z; = x; — w}
while(p(z,) > u){x, =z, + w}
Part 2: Sample x (Shrinking)
while(true) {
Draw z from within the interval (x;,z,), then accept or shrink.
x ~ Uniform(z;, z,)
if(p(x) > u){break}
else if(z > M) {z, = 7}
else{x; = z}

}

2D = g () =y
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Slice Sampling

Multivariate Distributions

— Resample each variable x; one-at-a-time (just like
Gibbs Sampling)

— Does not require sampling from
P(zi|{x;}ji)
— Only need to evaluate a quantity proportional to
the conditional

p(wil{z;} i) o< p(wil{z; } i)



Hamiltonian Monte Carlo



Example: Why MH is too slow?

Large variance for the Small variance for the
proposal proposal

Michael Betancourt, “A Conceptual Introduction to Hamiltonian Monte Carlo,” Link:

https://arxiv.org/pdf/1701.02434.pdf =



Example: Why MH is too slow?

To get samples like this This how the trajectory
should look like!

Michael Betancourt, “A Conceptual Introduction to Hamiltonian Monte Carlo,” Link:

https://arxiv.org/pdf/1701.02434.pdf 2



An Intuition from Physics

For every point in the parameter space, we need a vector field
(assignment of a direction at every point) where the directions

are aligned with the high probability regions.
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An Intuition from Physics

the right amount of momentum to the physical
system, the equations describing the evolution

of the satellite define a vector field aligned with
the orbit

Michael Betancourt, “A Conceptual Introduction to Hamiltonian Monte Carlo,” Link:

https://arxiv.org/pdf/1701.02434.pdf e



Remember the Auxiliary Variable

Consider drawing samples from (x). For an auxiliary variable
p we introduce a distribution m(p|x) to form the joint
distribution:

/ p(z,y) = p(ylz)p(z) t(x)

| use r(+,-) to denote the
probability. | want to use p

for a different thing! The auxiliary variable (moment)
dim(x) = dim(p)

The latent variables
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Remember the Auxiliary Variable

The expanded system defines a Hamiltonian that decomposes
into a potential energy and kinematic energy.

m(z,p) = m(plz)m(z)
H(Qf,p) — —logw(x,p)

____________________________________________________________

Kinematic Energy Potential Energy
K(p,X) E(x)
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Hamiltonian Monte Carlo

* Suppose we have a distribution of the form:

m(x) = exp{—E(x)}/Z
where 2 € R

* We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information V , F'(x)

* If we can evaluate it, the gradient tells us
where to look for high-probability regions!



Background: Hamiltonian Dyanmics

Applications:
— Following the motion of atoms in a fluid through
time
— Integrating the motion of a solar system over time

— Considering the evolution of a galaxy (i.e. the
motion of its stars)

— “molecular dynamics”
— “N-body simulations”

Properties:

— Total energy of the system H(x,p) stays constant
— Dynamics are reversible «_
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Hamiltonian Dynamic

This is how we get the vector field:

Acts like a correction Gradient of the energy

for the gradient
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A Choice for Kinematics

let € RY bea position

P E RY be amomentum

Potential energy: E(m)
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = F(x) + K(p)

© Hamitomianfunction
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A Choice for Kinematics




A Choice for Kinematics

L0 | 2O £




A Choice for Kinematics

let € RY bea position

P E RY be amomentum

Potential energy: E(w)
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = F(x) + K(p)

© Hamitomianfunction

How to simulate the dynamic:
Given a starting position x” and a starting momentum p” we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method

3. etc.
37



Background: Hamiltonian Dyanmics

Parameters to tune:
1. Step size, €
2. Number of iterations, L

Leapfrog Algorithm:

forrinl...L:
P=DpP-— %VmE(w)
r =X+ €P
P=pP-— %VmE(w)



Different Integration Schemes

Leaf frog: the numerical trajectories
oscillate around the exact level set, even
as we integrate for longer and longer

Most numerical integrators tend to drift
away. As the system is integrated longer
and longer, errors add coherently and
push the numerical trajectory away from times.
the exact trajectory.
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Figure from Neal (2011)

Different Integration Schemes

(a) Euler’s method, stepsize 0.3 (b) Modified Euler’s method, stepsize 0.3
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Figure from Neal (2011)

Hamiltonian Monte Carlo

Preliminaries

Goal: p(x) =exp{—FE(x)}/Z  where T € RN

=Y p(a,p) = exp{—K(x}/Z) |CAUSSEnIN
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HMC Algorithm

1. Sample momentum (p) from distribution
implied by the kinetic T(p|x).

2. Update (x,p) according to Hamiltonian

Dynamics K
T < T+ €
| ap
0K OF
pp—e ox I ox

3. Accept/Reject the new sample

r(accept) = min (1, ﬂ<<1>7<w,p>>>

m(x,p)




HMC Algorithm

1. Sample momentum (p) from distribution
implied by the kinetic T(p|x).

2. Update (x,p) according to Hamiltonian
Dynamics AT

“ | iaK i

XL £z € |
0p
S 0K OF

p—p 65 Or  Ox

3. Accept/Reject the new sample

. W(CI?T(CC,Z?))>

m(accept) = min ( ,
(aceept) w@.p




Position coordinates
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Figure from Neal (2011)

Hamiltonian Monte Carlo

Value of Hamiltonian
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Figure from Neal (2011)

M-H vs. HMC

Random-walk Metropolis Hamiltonian Monte Carlo

2 9
1 - 1 -
0 - 0 -
1 - 14
i _9

| | | | | | | | | |

-2 -1 0 1 2 -2 -1 0 1 2

45



Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:


http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

ABOUT

USERS

HMCin 2018

DEVELOPERS EVENTS SHOP  SUPPORT

http://mc-stan.org/

Stan

The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo

Matthew D. Hoffman MATHOFFM@ADOBE.COM
Adobe Research

601 Townsend St.

San Francisco, CA 94110, USA

Andrew Gelman GELMAN@STAT.COLUMBIA.EDU
Departments of Statistics and Political Science

Columbia University

New York, NY 10027, USA

47



Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement
— Good theoretical guarantees as ¢t — oo

* Cons
— Lots of tunable parameters [ design choices

— Can be quite slow to converge
— Difficult to tell whether it's working



