Directed GMs: Bayesian Networks

Kayhan Batmanghelich

Announcements

- HWO is out
- Class recording on YouTube
- Readings will be posted today
- Piazza
- Office hours will be posted soon
- Who is going to scribe?

```
In [1]: import numpy as np
In [2]: row, col = np.random.randint(1,5,size=(1,)), np.random.randint(1,10, size=(1,))
In [3]: print row, col
[4] [6]
```


Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

- Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & 1 / Z \exp \left\{E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}, X_{1}\right)+E\left(X_{4}, X_{2}\right)+E\left(X_{5}, X_{2}\right)\right. \\
& \left.+E\left(X_{6}, X_{3}, X_{4}\right)+E\left(X_{7}, X_{6}\right)+E\left(X_{8}, X_{5}, X_{6}\right)\right\}
\end{aligned}
$$

- Representation of directed GM

Notation

- Variable, value and index
- Random variable
- Random vector
- Random matrix
- Parameters

Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6
$$

- Loaded die

$$
\begin{aligned}
& P(1)=P(2)=P(3)=P(5)=1 / 10 \\
& P(6)=1 / 2
\end{aligned}
$$

Casino player switches back-\&-forth between fair and loaded die once every 20 turns

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins \$2

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
- This is the EVALUATION problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
- This is the DECODING question

- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
- This is the LEARNING question

Knowledge Engineering

- Picking variables
- Observed
- Hidden
- Picking structure
- CAUSAL
- Generative
- Coupling

- Picking Probabilities
- Zero probabilities
- Orders of magnitudes
- Relative values

Hidden Markov Model

The underlying
source:
Speech signal
genome function
dice
The sequence:
Phonemes
DNA sequence
sequence of rolls

Getting Insights from the Probability

- Given a sequence $\mathbf{x}=x_{1} \ldots . . . x_{\mathrm{T}}$ and a parse $y=y_{1}, \ldots \ldots ., y_{T}$,
- To find how likely is the parse: (given our HMM and the sequence)

$$
\begin{aligned}
p(\mathbf{x}, \mathbf{y}) & =p\left(x_{1} \ldots \ldots x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \quad \text { (Joint probability) } \\
& =p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) p\left(x_{1} \ldots \ldots x_{\mathrm{T}} \mid y_{1}, \ldots \ldots, y_{\mathrm{T}}\right)
\end{aligned}
$$

- How far on the tail (Marginal probability):

$$
p(\mathbf{x})=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{t-1}, v_{t}} \prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)
$$

-When did he use unfair dice (Posterior probability): $\quad p(\mathbf{y} \mid \mathbf{x})=p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$

- We will learn how to do this explicitly (polynomial time)

Directed Graphical Model (Bayesian Network)

- Nodes represent observed and unobserved random variables. Edges denote influence/dependence.
- The graph denotes the data generating procedure.

- It is a data structure/language to represent factorization of joint distribution.

- One can read the set of conditional independence from the graph. .

$$
x \Perp y
$$

$$
x \not \Perp y
$$

$$
p\left(x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{2} \mid x_{1}\right) p\left(x_{4} \mid x_{2}\right) P\left(x_{5} \mid x_{3}, x_{4}\right)
$$

Bayesian Network: Factorization Theorem

- Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node givendis, parents":

$$
P\left(X_{1}, \cdots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

where \mathbf{X}_{π} is the set of parents of X_{i}, d is the number of nodes (variables) in the graph.

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

Specification of a directed GM

- There are two components to any GM:
- the qualitative specification specifies a family of distributions
- the quantitative specification specifies a distribution from the family

Where does the Qualitative Specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data
- We simply link a certain architecture (e.g. a layered graph)

DAG and Independences

Local Structures \& Independencies

- Common parent
- Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"
- Cascade
- Knowing B decouples A and C
"given the level of gene B, the level gene A provides no extra prediction value for the level of gene $\mathrm{C}^{\prime \prime}$
- V-structure
- Knowing C couples A and B because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

sana

- The language is compact, the concepts are rich!

A simple proof:

$$
\begin{aligned}
& \text { Factorization by the graph } \equiv \begin{array}{l}
\text { Independent set } \\
P(A, B, C)=P(A \mid B) P(C \mid B) P(B) \quad \mathcal{I}(\mathcal{G})=\left\{\begin{array}{l}
\{A \Perp B(A, C \mid B)
\end{array}\right) P(A \mid B) P(C \mid B \\
P(A, C \mid B)=\frac{P(A, B, C)}{P(B)}=\frac{P(A \mid B) X(C \mid B) P(B)}{P(B)} \\
P(A, B \mid C) \stackrel{?}{=} P(A \mid C) P(B \mid C)
\end{array}
\end{aligned}
$$

C

$$
\begin{aligned}
& y^{3} \\
& y, z, \\
& y=\text { set of nod } \\
& y
\end{aligned}
$$

- Defn : Let P be a distribution over \boldsymbol{X}. We define I(P f to be the set of independence assertions of the form $\left(X \perp{ }^{Y} \mid, ~(X)\right.$) that hold in P (however how we set the parameter-values).

- Defn : Let K be any graph object associated with a set of independencies $\mathrm{I}(\mathrm{K})$. We say that K is an I -map for a set of independencies $\mathrm{I}, \mathrm{I}(\mathrm{K}) \subseteq \mathrm{I}$.
- We now say that G is an I-map for P if G is an I -map for $\mathrm{I}(\mathrm{P})$, where we use $I(G)$ as the set of independencies associated.

I-map is a conservative specification of $\mathrm{P} I(G) \subset I(P)$

Ex: Which of the following graphs allows for both probability distributions?

Any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G.

The intuition behind I(G) local Markov assumptions of BN

Remember the Bayesian network structure:

- Defn :

$$
P\left(X_{1}, \cdots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Let $P a_{X i}$ denote the parents of X_{i} in G , and NonDescendants $_{x i}$ denote the variables in the graph that are not descendants of X_{i}. Then G encodes the following set of local conditional independence assumptions $I_{e}(G)$:
$\mathcal{I}_{\ell}(\mathcal{G})=\left\{X_{i} \Perp\right.$ NonDescendants $\left.\left(X_{i}\right) \quad \mid p a\left(X_{i}\right): \forall i\right\}$
In other words, each node X_{i} is independent of its nondescendants given its parents.

d -connection and d-separation

Defn: If G is a directed graph in which \mathcal{X}, \mathcal{Y} and \mathcal{Z} are disjoint sets of vertices, then \mathcal{X} and \mathcal{Y} are d-connected by \mathcal{Z} in \mathcal{G} if and only if there exists an undirected path U between some vertex in \mathcal{X} and some vertex in \mathcal{Y} such that for every collider C on U , either \mathcal{C} or a descendent of C is in \mathcal{Z}, and no non-collider on U is in \mathcal{Z}.
\mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z} in \mathcal{G} if and only if they are not d-connected by \mathcal{Z} in \mathcal{G}.

$$
\mathcal{X} \Perp \mathcal{Y} \mid \mathcal{Z}
$$

Alternative Definition

Defn: variables x and y are D-separated (conditionally independent) given z if they are separated in the moralized ancestral graph

- Example:

Original graph

ancestral

Moral ancestral

Bayes Ball Algorithm: Testing $\mathcal{X} \Perp \mathcal{Y} \mid \mathcal{Z}$

- X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node (僢 X to any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary conditions):
blocked
blocked

Active

Common Cause:
Active

Causal Trail:

Active

blocked

Common Effect:

Active

Example:

Example:

A bit of Theories

Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem

For a graph G,
Let \mathcal{D}_{1} denote the family of all distributions that satisfy I(G),
Let \mathcal{D}_{2} denote the family of all distributions that factor according to G,

Then $\mathcal{D}_{1} \equiv \mathcal{D}_{2}$

$$
P\left(X_{1}, \cdots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.
"Completeness":
"Claim" : For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d-\operatorname{sep}_{G}(X ; Y \mid Z)$?

Soundness and completeness

- Theorem : For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that $I(P)=I(G)$
- Thm: Let G be a BN graph. If X and Y are not d-separated given Z in G , then X and Y are dependent in some distribution P that factorizes over G.

Uniqueness of BN

- Which graphs satisfy $\mathcal{I}(\mathcal{G})=\left\{x_{1} \Perp x_{2} \mid x_{3}\right\}$?

(d)
- You can see that in the factorization:

I-equivalence

- Which graphs satisfy $\mathcal{I}(\mathcal{G})=\left\{x_{1} \Perp x_{2} \mid x_{3}\right\}$?

- Defn : Two BN graphs G1 and G2 over \boldsymbol{X} are I-equivalent if $I(\mathrm{G} 1)=I(\mathrm{G} 2)$.
- Any distribution P that can be factorized over one of these graphs can be factorized over the other.
- Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
- This observation has important implications with respect to our ability to determine the directionality of influence.

Detecting I-equivalence

- Defn : The skeleton of a Bayesian network graph G over \boldsymbol{V} is an undirected graph over \boldsymbol{V} that contains an edge $\{X, Y\}$ for every edge (X, Y) in G.

- Thm : Let G_{1} and G_{2} be two graphs over \boldsymbol{V}. If G_{1} and G_{2} have the same skeleton and the same set of v-structures then they are l-equivalent.

Practical Examples

Example of CPD for Discrete BN

a^{0}	0.75			
a^{1}	0.25	\quad	b^{0}	0.33
:---	:---			
b^{1}	0.67			

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Example of CPD for Continuous BN

$$
\mathrm{A} \sim \mathrm{~N}\left(\mu_{a}, \Sigma_{a}\right) \quad \mathrm{B} \sim \mathrm{~N}\left(\mu_{\mathrm{b}}, \Sigma_{\mathrm{b}}\right)
$$

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Simple BNs:

Conditionally Independent Observations

The "Plate" Micro

Model parameters

$$
\text { Data }=\left\{y_{1}, \ldots y_{n}\right\}
$$

Plate $=$ rectangle in graphical model
variables within a plate are replicated
in a conditionally independent manner

$$
y_{i} \mid z_{i}, \theta \quad p(y \mid z, \theta) \quad z_{i} \in\{1,-1, k\}
$$

Hidden Markov Model:
from static to dynamic mixture models
$z_{i} \sim \operatorname{Cat}(\pi)$ which cluster

h

Definition (of HMM)

- Observation space

Alphabetic set: Euclidean space:

$$
\begin{gathered}
\mathrm{C}=\left\{c_{1}, c_{2}, \cdots, c_{k}\right\} \\
\mathrm{R}^{d}
\end{gathered}
$$

- Index set of hidden states

$$
I=\{1,2, \cdots, M\}
$$

- Transition probabilities between any two states

$$
p\left(y_{t}^{j}=1 \mid y_{t-1}^{i}=1\right)=a_{i, j}
$$

or

$$
p\left(y_{+} \mid y_{+-1}^{i}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 1}, \ldots, a_{i, M}\right), \forall i \in \mathrm{I}
$$

- Start probabilities

$$
p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right) .
$$

- Emission probabilities associated with each state

$$
p\left(x_{+} \mid y_{+}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 1}, \ldots, b_{i, k}\right), \forall i \in \mathrm{I} .
$$

or in general:

$$
p\left(x_{+} \mid y_{+}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathrm{I}
$$

Probability of a parse

- Given a sequence $\mathbf{x}=x_{1} \ldots \ldots . x_{T}$ and a parse $y=y_{1}, \ldots . . ., y_{T}$,
- To find how likely is the parse:
 (given our HMM and the sequence)

$$
\begin{array}{rlr}
p(\mathbf{x}, \mathbf{y}) & =p\left(x_{1} \ldots \ldots x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \quad \text { (Joint probability) } \\
& =p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right) \\
& =p\left(y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) p\left(x_{1} \ldots \ldots x_{\mathrm{T}} \mid y_{1}, \ldots \ldots, y_{\mathrm{T}}\right)
\end{array}
$$

Summary: take home messages

- Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of local conditional probability dist. CPDs associated with G's nodes.
- A BN capture "causality", "generative schemes", "asymmetric influences", etc., between entities
- Local and global independence properties identifiable via d- separation criteria (Bayes ball)
- Computing joint likelihood amounts multiplying CPDs
- But computing marginal can be difficult
- Thus inference is in general hard
- Important special cases:
- Hidden Markov models
- Tree models

A few myths about graphical models

- They require a localist semantics for the nodes
- They require a causal semantics for the edges
- They are necessarily Bayesian
- They are intractable

Extra Slides

Active trail

- Causal trail $X \rightarrow Z \rightarrow Y$: active if and only if Z is not observed.
- Evidential trail $\mathrm{X} \leftarrow \mathrm{Z} \leftarrow \mathrm{Y}$: active if and only if Z is not observed.
- Common cause $X \leftarrow Z \rightarrow Y$: active if and only if Z is not observed.
- Common effect $X \rightarrow Z \leftarrow Y$: active if and only if either Z or one of Z's descendants is observed

Definition : Let $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ be three sets of nodes in G. We say that \boldsymbol{X} and \boldsymbol{Y} are d separated given Z, denoted d - $\operatorname{sep}_{G}(X ; Y \mid Z)$, if there is no active trail between any node $X \in \boldsymbol{X}$ and $Y \in \boldsymbol{Y}$ given \boldsymbol{Z}.

What is in I(G) ---
 Global Markov properties of BN

- X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary conditions):

(a)

© Eric Xing @ CMU, 2005-2015
(b)
- Defn: $I(G)=$ all independence properties that correspond to d-separation:

$$
\mathrm{I}(G)=\left\{X \perp Z \mid Y: \operatorname{dsep}_{G}(X ; Z \mid Y)\right\}
$$

- D-separation is sound and complete (more details later)

Summary:
 Representing Multivariate Distribution

- Representation: what is the joint probability dist. on multiple variables?

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8},\right)
$$

- How many state configurations in total? --- 2^{8}
- Are they all needed to be represented?
- Do we get any scientific/medical insight?
- Factored representation: the chain-rule

- This factorization is true for any distribution and any variable ordering
- Do we save any parameterization cost?
- If X_{i}^{\prime} 's are independent: $\left(P\left(X_{i} / \cdot\right)=P\left(X_{i}\right)\right)$

```
P( (X, , X2, , X , , X , , X5 , , X , , X7, , X )
= P(X)
```

-What do we gain?
-What do we lose?

Minimum I-MAP

- Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
- Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
- We want a graph that has the maximum possible $I(G)$, yet still $\subseteq I(P)$
- Defn : A graph object G is a minimal I-map for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.

Minimum I-MAP is not unique

Summary of BN semantics

- Defn : A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
- Conditional independencies imply factorization
- Factorization according to G implies the associated conditional independencies.
- Are there other independences that hold for every distribution P that factorizes over G?

