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Announcements	

• HW0	is	out
• Class	recording	on	YouTube
• Readings	will	be	posted	today
• Piazza
• Office	hours	will	be	posted	soon
•Who	is	going	to	scribe?



l Directed	edges give	causality relationships	(Bayesian	Network or	
Directed	Graphical	Model):

l Undirected	edges simply	give	correlations between	variables	
(Markov	Random	Field or	Undirected	Graphical	model):

Two	types	of	GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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• Representation	of	directed	GM
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Notation

• Variable,	value	and	index	

• Random	variable

• Random	vector

• Random	matrix

• Parameters
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Example:	The	Dishonest	Casino
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A	casino	has	two	dice:
l Fair	die
P(1)	=	P(2)	=	P(3)	=	P(5)	=	P(6)	=	1/6

l Loaded	die
P(1)	=	P(2)	=	P(3)	=	P(5)	=	1/10
P(6)	=	1/2

Casino	player	switches	back-&-forth	between	
fair	and	loaded	die	once	every	20	turns

Game:
1. You	bet	$1
2. You	roll	(always	with	a	fair	die)
3. Casino	player	rolls	(maybe	with	fair	die,	
maybe	with	loaded	die)

4. Highest	number	wins	$2
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Puzzles	regarding	the	dishonest	casino	

GIVEN:	A	sequence	of	rolls	by	the	casino	player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
• How	likely	is	this	sequence,	given	our	model	of	how	the	casino	works?

• This	is	the EVALUATION problem

• What	portion	of	the	sequence	was	generated	with	the	fair	die,	and	what	portion	with	the	loaded	
die?
• This	is	the DECODING question

• How	“loaded”	is	the	loaded	die?	How	“fair”	is	the	fair	die?	How	often	does	the	casino	player	
change	from	fair	to	loaded,	and	back?
• This	is	the LEARNING question
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Knowledge	Engineering

• Picking	variables
• Observed
• Hidden

• Picking	structure
• CAUSAL	
• Generative
• Coupling	

• Picking	Probabilities
• Zero	probabilities
• Orders	of	magnitudes
• Relative	values	
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Hidden	Markov	Model
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
The	sequence:

The	underlying	
source:

Phonemes

Speech	signal

DNA	sequence	

dice
genome	function

sequence	of	rolls	

9



Getting	Insights	from	the	Probability	
• Given	a	sequence x =	x1……xT
and	a	parse y =	y1,	……,	yT,

• To	find	how	likely	is	the	parse:
(given	our	HMM	and	the	sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

• How	far	on	the	tail	(Marginal	probability):

• When	did	he	use	unfair	dice	(Posterior	probability):

• We	will	learn	how	to	do	this	explicitly	(polynomial	time)
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Directed	Graphical	Model	(Bayesian	Network)
• Nodes represent	observed	and	unobserved	
random	variables.	Edges denote	
influence/dependence.	

11

• It	is	a	data	structure/language	to	represent	
factorization of	joint	distribution.

y y
p(x, y) = p(x)p(y)

• One	can	read	the	set	of	conditional	independence	
from	the	graph.	.	

y y

x 6?? y

• The	graph	denotes	the	data	generating	
procedure.	



Bayesian	Network:	Factorization	Theorem

• Theorem:	
Given	a	DAG,	The	most	general	form	of	the	probability	distribution	
that	is	consistent	with the	graph	factors	according	to	“node	given	its	
parents”:

where						is	the	set	of	parents	of	Xi,	d is	the	number	of	nodes	
(variables)	in	the	graph.

ip
X

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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P (X1, · · · , Xn) =
nY

i=1

P (Xi|pa(Xi))



Specification	of	a	directed	GM

• There	are	two	components	to	any	GM:
• the	qualitative specification	specifies	a	family	of	distributions
• the	quantitative specification	specifies	a	distribution	from	the	family
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Where	does	the	Qualitative	Specification	come	from?

• Prior	knowledge	of	causal	relationships
• Prior	knowledge	of	modular	relationships
• Assessment	from	experts
• Learning	from	data
• We	simply	link	a	certain	architecture	(e.g.	a	layered	graph)	
• …
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DAG	and	Independences



• Common	parent
• Fixing	B	decouples A	and	C

"given	the	level	of	gene	B,	the	levels	of	A	and	C	are	independent"

• Cascade
• Knowing	B decouples A	and	C

"given	the	level	of	gene	B,	the	level	gene	A	provides	no	
extra	prediction	value	for	the	level	of	gene	C"

• V-structure
• Knowing	C	couples	A	and	B
because	A	can	"explain	away"	B	w.r.t.	C

"If	A	correlates	to	C,	then	chance	for	B	to	also	correlate	to	B	will	decrease"

• The	language	is	compact,	the	concepts	are	rich!

Local	Structures	&	Independencies

A CB

A

C

B

A

B

C
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A	simple	proof:

A

B

C
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Factorization	by	the	graph Independent	Set⌘
P (A,B,C) = P (A|B)P (C|B)P (B) I(G) = {A ?? B|C}



I-maps

• Defn :	Let	P	be	a	distribution	over	X.	We	define	I(P) to	be	the	set	of	
independence	assertions	of	the	form	(X ^ Y |	Z)	that	hold	in	P	(however	
how	we	set	the	parameter-values).

• Defn :	Let	K	be	any	graph	object associated	with	a	set	of	independencies	
I(K).	We	say	that	K	is	an	I-map	for	a	set	of	independencies	I,	I(K)	Í I.

• We	now	say	that	G	is	an	I-map	for	P	if	G	is	an	I-map	for	I(P),	where	we	use	
I(G)	as	the	set	of	independencies	associated.
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I-map	is	a	conservative	specification	of	P

P1 P2

19

Ex:	Which	of	the	following	graphs	allows	for	both	probability	distributions?

Any	independence	that	G	asserts	must	also	hold	in	P.	Conversely,	P	may	
have	additional	independencies	that	are	not	reflected	in	G.



The	intuition	behind	I(G)	
local	Markov	assumptions	of	BN
Remember	the	Bayesian	network	structure:

• Defn :	
Let	PaXi denote	the	parents	of	Xi in	G,	and	NonDescendantsXi denote	the	variables	in	the	graph	that	are	not	
descendants	of	Xi.	Then	G	encodes	the	following	set	of	local	conditional	independence	assumptions Iℓ(G):

In	other	words,	each	node	Xi is	independent	of	its	nondescendants given	its	parents.
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P (X1, · · · , Xn) =
nY

i=1

P (Xi|pa(Xi))



d-connection	and	d-separation
Defn:	If	G	is	a	directed	graph	in	which	 ,					and						are	disjoint	sets	of	vertices,	then	
and		 are	d-connected by	 in					if	and	only	if	there	exists	an	undirected	path	U	
between	some	vertex	in	 and	some	vertex	in	 such	that	for	every	collider C	on	U,	
either	C	or	a	descendent	of	C	is	in	 ,	and	no	non-collider	on	U	is	in					.	

21

X X
G

X

and					are	d-separated by	 in					if	and	only	if	they	are	not	d-connected by	 in	 .X G G

X

· · ·
···

X ?? Y|Z



Alternative	Definition

Defn:	variables	x	and	y	are	D-separated (conditionally	independent)	
given	z	if	they	are	separated	in	the	moralized	ancestral	graph
• Example:

22
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Bayes	Ball	Algorithm:	Testing	

• X is	d-separated (directed-separated)	from	Z	given	Y	if	we	can't	send	a	ball	from	any	node	in	X	to	
any	node	in	Z	using	the	"Bayes-ball"	algorithm	illustrated	bellow	(and	plus	some	boundary	
conditions):

X ?? Y|Z

Causal	Trail:

blocked Active

Common	Cause:

blocked Active

23

blockedActive

X Z

Active
Common	Effect:

…

Y



Example:	
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Example:	

• Complete	the	I(G)	of	this	graph:

x1

x2

x4

x3

©	Eric	Xing	@	CMU,	2005-2015 25

Scriber	please	fill	in	
the	rest	of	this	slide	!



A	bit	of	Theories



Toward	quantitative	specification	of	probability	distribution

• Separation	properties	in	the	graph	imply	independence	properties	about	
the	associated	variables

• The	Equivalence	Theorem
For	a	graph	G,
Let	 denote	the	family	of	all	distributions that	satisfy	I(G),

Let									denote	the	family	of	all	distributions that	factor	according	
to	G,

Then	 .
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D1

D2

P (X1, · · · , Xn) =
nY

i=1

P (Xi|pa(Xi))

D1 ⌘ D2



Soundness	and	completeness	

D-separation	is	sound	and	"complete"	w.r.t.	BN	factorization	law

Soundness:

Theorem:	If	a	distribution	P	factorizes	according	to	G,	then	I(G)	Í I(P).

"Completeness":

"Claim":	For	any	distribution	P	that	factorizes	over	G,	if	(X	^ Y	|	Z)	Î I(P)	then	d-sepG(X;	Y	|	Z)	?	
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Soundness	and	completeness	

D-separation	is	sound	and	"complete"	w.r.t.	BN	factorization	law

Soundness:

Theorem:	If	a	distribution	P	factorizes	according	to	G,	then	I(G)	Í I(P).

"Completeness":

"Claim":	For	any	distribution	P	that	factorizes	over	G,	if	(X	^ Y	|	Z)	Î I(P)	then	d-sepG(X;	Y	|	Z).	

29

P1

• Theorem	:	For	almost	all distributions	P	that	factorize	over	G,	i.e.,	for	
all	distributions	except	for	a	set	of	"measure	zero"	in	the	space	of	CPD	
parameterizations,	we	have	that	I(P)	=	I(G)

• Thm:	Let	G	be	a	BN	graph.	If	X and	Y are	not d-separated	given	Z in	G,	
then	X and	Y are	dependent	in	some distribution	P	that	factorizes	
over	G.



Uniqueness	of	BN

• Which	graphs	satisfy																																											?	

30

I(G) = {x1 ?? x2|x3}

• You	can	see	that	in	the	factorization:



I-equivalence

• Which	graphs	satisfy																																											?	

31

I(G) = {x1 ?? x2|x3}

• Defn :	Two	BN	graphs	G1	and	G2	over	X are	I-equivalent	if	I(G1)	=	I(G2).	

• Any	distribution	P	that	can	be	factorized	over	one	of	these	graphs	can	be	factorized	over	the	other.	
• Furthermore,	there	is	no	intrinsic	property	of	P	that	would	allow	us	associate	it	with	one	graph	rather	
than	an	equivalent	one.	

• This	observation	has	important	implications	with	respect	to	our	ability	to	determine	the	directionality	
of	influence.	



Detecting	I-equivalence

• Defn :	The	skeleton of	a	Bayesian	network	graph	G	over	V is	an	undirected	graph	
over	V that	contains	an	edge	{X,	Y}	for	every	edge	(X,	Y)	in	G.

• Thm :	Let	G1 and	G2 be	two	graphs	over	V.	If	G1 and	G2 have	the	same	skeleton	
and	the	same	set	of	v-structures	then	they	are	I-equivalent.
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Practical	Examples



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d)	=	
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Example	of	CPD	for	Discrete	BN
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A B

C

P(a,b,c.d)	=	
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa,	Σa) B~N(μb,	Σb)

C~N(A+B,	Σc)

D~N(μd+C,	Σd)
D

C

P(
D|

 C
)

Example	of	CPD	for	Continuous	BN
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Simple	BNs:	
Conditionally	Independent	Observations

y1

q

Data

Model	parameters

y2 yn-1 yn
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The	“Plate”	Micro

yi

i=1:n

q

Data	=	{y1,…yn}

Model	parameters

Plate	=	rectangle	in	graphical	model

variables	within	a	plate	are	replicated
in	a	conditionally	independent	manner
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Hidden	Markov	Model:	
from	static	to	dynamic	mixture	models

Dynamic	mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static	mixture

AX1

Y1

N
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Definition	(of	HMM)
• Observation	space

Alphabetic	set:
Euclidean	space:

• Index	set	of	hidden	states

• Transition	probabilities between	any	two	states

or

• Start	probabilities

• Emission	probabilities associated	with	each	state

or	in	general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Probability	of	a	parse

• Given	a	sequence x =	x1……xT

and	a	parse y =	y1,	……,	yT,
• To	find	how	likely	is	the	parse:
(given	our	HMM	and	the	sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Summary:	take	home	messages

• Defn (3.2.5):	A	Bayesian	network	is	a	pair	(G,	P)	where	P	factorizes	over	G,	
and	where	P	is	specified	as	set	of	local	conditional	probability	dist.	CPDs	
associated	with	G’s	nodes.
• A	BN	capture	“causality”,	“generative	schemes”,	“asymmetric	influences”,	
etc.,	between	entities
• Local	and	global	independence	properties	identifiable	via	d- separation	
criteria	(Bayes	ball)
• Computing	joint	likelihood	amounts	multiplying	CPDs	

• But	computing	marginal	can	be	difficult
• Thus	inference	is	in	general	hard

• Important	special	cases:
• Hidden	Markov	models
• Tree	models
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A	few	myths	about	graphical	models

• They	require	a	localist	semantics	for	the	nodes

• They	require	a	causal	semantics	for	the	edges	

• They	are	necessarily	Bayesian	

• They	are	intractable
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Extra	Slides



Active	trail

• Causal	trail	X	→	Z	→	Y	:	active	if	and	only	if	Z	is	not	
observed.

• Evidential	trail	X	←	Z	←	Y	:	active	if	and	only	if	Z	is	not	
observed.

• Common	cause	X	←	Z	→	Y	:	active	if	and	only	if	Z	is	not	
observed.

• Common	effect	X	→	Z	←	Y	:	active	if	and	only	if	either	Z	or	
one	of	Z’s	descendants	is	observed

Definition	:	Let	X,	Y ,	Z be	three	sets of	nodes	in	G.	We	say	that	X and	Y are	d-
separated	given	Z,	denoted	d-sepG(X;Y |	Z), if	there	is	no	active	trail	between	any	
node	X Î X and	Y Î Y given	Z.

©	Eric	Xing	@	CMU,	2005-2015
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What	is	in	I(G)	---
Global	Markov	properties	of	BN
• X is	d-separated (directed-separated)	from	Z	given	Y	if	we	can't	send	a	ball	from	any	node	in	X	to	
any	node	in	Z	using	the	"Bayes-ball"	algorithm	illustrated	bellow	(and	plus	some	boundary	
conditions):

• Defn:	I(G)=all	independence	properties	
that	correspond	to	d-separation:

• D-separation	is	sound	and	complete
(more	details	later)

{ });(dsep:)(I YZXYZXG G^=
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l Representation:	what	is	the	joint	probability	dist.	on	multiple	variables?

l How	many	state	configurations	in	total?	--- 28

l Are	they	all	needed	to	be	represented?
l Do	we	get	any	scientific/medical	insight?

l Factored	representation:	the	chain-rule

l This	factorization	is	true	for	any	distribution	and	any	variable	ordering
l Do	we	save	any	parameterization	cost?

l If	Xi's are	independent:	(P(Xi|·)=	P(Xi))

),,,,,,,,(  87654321 XXXXXXXXP

Summary:	
Representing	Multivariate	Distribution
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lWhat	do	we	gain?
lWhat	do	we	lose?

©	Eric	Xing	@	CMU,	2005-2015 46



Minimum	I-MAP

• Complete	graph	is	a	(trivial)	I-map	for	any	distribution,	yet	it	does	not	
reveal	any	of	the	independence	structure	in	the	distribution.
• Meaning	that	the	graph	dependence	is	arbitrary,	thus	by	careful	
parameterization	an	dependencies	can	be	captured
• We	want	a	graph	that	has	the	maximum	possible	I(G),	yet	still	Í I(P)

• Defn	:	A	graph	object	G	is	a	minimal	I-map	for	a	set	of	independencies	
I	if	it	is	an	I-map	for	I,	and	if	the	removal	of	even	a	single	edge	from	G	
renders	it	not	an	I-map.
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Minimum	I-MAP	is	not	unique
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Summary	of	BN	semantics

• Defn	:	A	Bayesian	network	is	a	pair	(G,	P)	where	P	factorizes	over	G,	
and	where	P	is	specified	as	set	of	CPDs	associated	with	G’s	nodes.

• Conditional	independencies	imply	factorization

• Factorization	according	to	G	implies	the	associated	conditional	
independencies.

• Are	there	other	independences that	hold	for	every	distribution	P	that	
factorizes	over	G?
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