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Announcements

* HWO is out

* Class recording on YouTube

* Readings will be posted today

* Piazza

* Office hours will be posted soon
* Who is going to scribe?

row, col = np.random.randint(1,5,s1ze=(1,)), np.random.randint(l,

row, col




Two types of GMs

e Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

PX; Xy X5, X X X Xy Xp)

= P(X,) P(X;) P(X;| X)) P(X,| X;) P(X,| X)
P(X,| X;, X,) P(X;| X,) P(X| X;, X,)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(XI, X2) X3, X4) X5; X6) X7, X8)

= I/Z exp{E(X)+EX)+TE(X; X))TE(X, X)TEX; X))
+ E(X6’ X33 X4)+E(X7’ X6)+E(X8’ X5’ X6)}
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* Representation of directed GM

s
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Notation

e Variable, value and index
 Random variable
 Random vector
 Random matrix

e Parameters



Example: The Dishonest Casino

A casino has two dice:
e Fair die

P(1) =P(2) = P(3) = P(5) = P(6) = 1/6
e Loaded die

P(1) =P(2) =P(3) =P(5) =1/10
P(6) =1/2

Casino player switches back-&-forth between
fair and loaded die once every 20 turns

Game:
1. You bet S1
2. You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2
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Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366165661626165156 6 6

QUESTION

* How likely is this sequence, given our model of how the casino works?
* This is the EVALUATION problem

* What portion of the sequence was generated with the fair die, and what portion with the loaded
die?
e This is the DECODING question

* How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player
change from fair to loaded, and back?
* This is the LEARNING gquestion
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Knowledge Engineering

* Picking variables

 Observed
e Hidden

* Picking structure
 CAUSAL
* Generative
* Coupling

* Picking Probabilities
e Zero probabilities
e Orders of magnitudes
* Relative values
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Hidden Markov Model

The underlying

source:
Speech signal Yl -, YZ N Y3 YT
genome function

dice

The sequence:
Phonemes X1 X2 X3 XT
DNA sequence

sequence of rolls
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Getting Insights from the Probability
* Given a sequence X = Xj..... Xy @ @ @ v@

andaparsey =y, ..., ¥y

e To find how likely is the parse:
(given our HMM and the sequence) @ @ @ @
px,y)  =px...... Xo Vs vonvees Vr) (Joint probability)
=p) POy [ v) pO | v) POy [ 1) o pOre [ yey) pOer [ 1)

=p) POy [ y1) ... pOrr [ yr)) X pxy | v) pOey [ 10) o pOer [ p)
=Py oneens yr) px...... X7| Vs eeveens Y1)

* How far on the tail (Marginal probability): () =2 p(xy)=) > > ”yll;[ HP(X 3)

 When did he use unfair dice (Posterior probability): p(y|x)=px,y)/ p(x)

* We will learn how to do this explicitly (polynomial time)
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Directed Graphical Model (Bayesian Network)

* Nodes represent observed and unobserved * Itis a data structure/language to represent

random variables. Edges denote factorization of joint distribution.
influence/dependence.

* The graph denotes the data generating @
procedure. @
p(y|z)

p(z,y) = p(z)p(y)

* One can read the set of conditional independence
from the graph..

F®®

Y r Ly |



Bayesian Network: Factorization Theorem

* Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the graph factors according to “node given its
parents”:

P(X1,--, Xn) = HP(Xq;\pa(Xz’))

where X, is the set of parents of X;, d is the number of nodes
(variables) in the graph.

P(XI’ XZ’ Xj” X4’ X5’ X6’ X7’ X8)

) - P(X) P(X) P(X| X)) P(X,| X;) P(Xy| X))
P(X4| X5 X) PX7| Xg) P(Xs| X5, Xe)
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Specification of a directed GM

* There are two components to any GM:
* the qualitative specification specifies a family of distributions
* the quantitative specification specifies a distribution from the family

© Eric Xing @ CMU, 2005-2015
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Where does the Qualitative Specification come from?

* Prior knowledge of causal relationships

* Prior knowledge of modular relationships

e Assessment from experts

* Learning from data

* We simply link a certain architecture (e.g. a layered graph)



DAG and Independences



Local Structures & Independencies

Common parent
e Fixing B decouples Aand C

B O

"given the level of gene B, the levels of A and C are independent” @ 0
e Cascade
* Knowing B decouples Aand C 7B B <
"given the level of gene B, the level gene A provides no

extra prediction value for the level of gene C"

V-structure
* Knowing C couples Aand B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!



A simple proof:

Factorization by the graph

Independent Set
d > &

P(A,B,C) = P(A|B)P(C|B)P(B) 7(G) ={A 1L B|C}



l-maps

 Defn : Let P be a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y | Z) that hold in P (however
how we set the parameter-values).

* Defn : Let K be any graph object associated with a set of independencies
I(K). We say that K is an I-map for a set of independencies |, [(K) < |.

* We now say that G is an I-map for P if G is an I-map for I(P), where we use
1(G) as the set of independencies associated.
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l-map is a conservative specification of P

Ex: Which of the following graphs allows for both probability distributions?
X Y |PX)Y) X Y | PX)Y)
K%/ O C) Gl T AR
' 39 P, v 0.3

P1 20yl 0.32 1/
al  yf 0.12
@ ({ xt oyl 0.48

1 I/U 0.2
Ox_y Oy_x

. . .
~ ~ ~

Lyl 0.1

Any independence that G asserts must also hold in P. Conversely, P may
have additional independencies that are not reflected in G.



The intuition behind I(G)
local Markov assumptions of BN

Remember the Bayesian network structure:

n

P(Xy, -, X,) = HP(Xi|PCL(Xz‘))

e Defn:

Let Pa,, denote the parents of X, in G, and NonDescendants,, denote the variables in the graph that are not
descendants of X.. Then G encodes the following set of local conditional independence assumptions I,(G):

Z,(G) = {X; 1L NonDescendants(X;) |pa(X;) :Vi}

In other words, each node X is independent of its nondescendants given its parents.
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d-connection and d-separation

Defn: If G is a directed graph in which X’,) and Z are disjoint sets of vertices, then X’
and ) are d-connected by Z in G if and only if there exists an undirected path U
between some vertex in X’ and some vertex in )/ such that for every collider Con U,
either C or a descendent of Cis in 2, and onUisin Z.

X and ) are d-separated by Z in G if and only if they are not d-connected byZing.

) X ol
~ N
e ~ // \
’ N 7’ \
’ \ ’ \
’ \ , \
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Alternative Definition

Defn: variables x and y are D-separated (conditionally independent)
given z if they are separated in the moralized ancestral graph

* Example:

Moral ancestral
ancestral

Original graph



Bayes Ball Algorithm: Testing X 1L V|2

« X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to
any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary

conditions):
blocked blocked
X Y z X Y z X 4 X 4
Causal Trail: QT.TO:'Q CO—()—( Q\ /Q O\ /Q
- N \/ \/
@ O
Y Y

blocked Common Effect:

) Y
Common Cause: f\@ ﬁ X s/ L
O
X Z X Z

v .
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* Complete the I(G) of this graph:

© Eric Xing @ CMU, 2005-2015
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A bit of Theories



Toward quantitative specification of probability distribution

e Separation properties in the graph imply independence properties about
the associated variables

* The Equivalence Theorem
For a graph G,

Let D, denote the family of all distributions that satisfy I(G),

Let ‘D5 denote the family of all distributions that factor according

to G,
P(le T 7Xn) — HP(Xz|pa(XZ))
Then D1 = Dy =

© Eric Xing @ CMU, 2005-2015
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Soundness and completeness

D-separation is sound and "complete"” w.r.t. BN factorization law

Soundness:

—

Theorem: If a distribution P factorizes according to G, then I(G) < I(P).

"Completeness":

"Claim": For any distribution P that factorizes over G, if (X LY | Z) € I(P) then d-sep(X; Y | Z) ?

© Eric Xing @ CMU, 2005-2015
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Soundness and completeness

) (X.Y)
T ( 0 0.08

P1 0 41| 0.32
ORCE

Ly0 0.12
G Ox_y Oy—x

. . . .
~ ~ ~ ~

Logd 0.48

* Theorem : For almost all distributions P that factorize over G, i.e., for
all distributions except for a set of "measure zero" in the space of CPD

parameterizations, we have that [(P) = I(G)

* Thm: Let G be a BN graph. If X'and Y are not d-separated given Z in G,
then X and Y are dependent in some distribution P that factorizes
over G.



Unigueness of BN
* Which graphs satisfy Z(G) = {x1 1L zo|x3}?
LPAF AP

* You can see that in the factorization:

p(x2|z3)p(ws|e1)p(x1) = p(x2, 23)p(ws, 1)/p(x3) = p(ai|zs)p(z2, x3)

-~

graph(c)

= ?($1|$3)P(-’E3|$2)P(-’1522 = ?($1|$3)P(~’E2|-’E3)P($3)1

TV v

graph(d) graph(b)
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l-equivalence

* Which graphs satisfy Z(G) = {z1 1L xo|x3}?

I i) I €9 I i) I i)

N N~ N/ N~

T3 xr3 T3 3
(a) (b) (c) (d)

* Defn: Two BN graphs G1 and G2 over X are l-equivalent if (G1) = 1(G2).

* Any distribution P that can be factorized over one of these graphs can be factorized over the other.

e Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather
than an equivalent one.

* This observation has important implications with respect to our ability to determine the directionality
of influence.



Detecting I-equivalence

* Defn : The skeleton of a Bayesian network graph G over V'is an undirected graph
over V that contains an edge {X, Y} for every edge (X, Y) in G.

» O ®»®®d ®O
(a) (b) (c)

* Thm: Let G, and G, be two graphs over V. If G, and G, have the same skeleton
and the same set of v-structures then they are I-equivalent.



Practical Examples



Example of CPD for Discrete BN

0.75

0.25

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

adh0 a’b’ a'b? a'b’
co 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
0.3 (0.5
07 (0.5

© Eric Xing @ CMU, 2005-2015
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Example of CPD for Continuous BN

P(a,b,c.d) =
A~N(Ug 250 B™N(uy, 2)) P(a)P(b)P(c|a,b)P(d|c)
CNAB,Z)
= 4
S

‘ DN (us+C, 24)
D

© Eric Xing @ CMU, 2005-2015
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Simple BNs:

Conditionally Independent Observations

G Model parameters
O @® -~

© Eric Xing @ CMU, 2005-2015
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The “Plate” Micro

@ Model parameters
@ Data = {y,,...Y,.}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

© Eric Xing @ CMU, 2005-2015
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Hidden Markov Model:

from static to dynamic mixture models

Static mixture Dynamic mixture

|

. ::

© Eric Xing @ CMU, 2005-2015 38




Definition (of HMM)

Observation space
Alphabetic set:
d

Euclidean space: R

Index set of hidden states | _ 12, M)

Transition probabilities between any two states

plyi =1yl =D=a,,

or p(y; | yi,=1)~Multinomial(g, ,.a,,,....a, , ) Vi 1.

Start probabilities
p(yy) ~ Multinomial(ﬂl,ﬁz,...,ﬁ " )

Emission probabilities associated with each state
p(x, |y =1) ~ Multinomial(8,,5.,.....5, . ) Vi 1.

or in general:

px, |yl =1)~f(16,)Viel

© Eric Xing @ CMU, 2005-2015
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Probability of a parse
 Given a sequence X = Xj......X; @ @ @ '@

and aparsey =Yy, ..., ¥y

* To find how likely is the parse: @ @ @ @

(given our HMM and the sequence)

p(x,y)  =p(x;...... X Vs vnvees , V1) (Joint probability)
=p) pCxy [ v) P | y) PO [ 1) - pOr [ Yo pOer [ 17)
=p0) POy [ y) - pOrr [ yn) X pxy [ 1) pOes [ 0) oo ploer [ vp)
=p0y, ... , ) Pl ... Xl Vs eeenns , V1)

© Eric Xing @ CMU, 2005-2015
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Summary: take home messages

e Defn (3.2.5): A Bayesian network is a \oair (G, P) where P factorizes over G,
and where P is specified as set of local conditional probability dist. CPDs
associated with G’s nodes.

)« )«

* A BN capture “causality”, “generative schemes”, “asymmetric influences”,
etc., between entities

* Local and global independence properties identifiable via d- separation
criteria (Bayes ball)

* Computing joint likelihood amounts multiplying CPDs
e But computing marginal can be difficult
* Thus inference is in general hard

* Important special cases:
 Hidden Markov models
* Tree models



A few myths about graphical models

* They require a localist semantics for the nodes
* They require a causal semantics for the edges
* They are necessarily Bayesian X

* They are intractable QL



Extra Slides



Active trail

* Causal trail X > Z - Y : active if and only if Z is not
observed.

* Evidential trail X < Z < Y : active if and only if Z is not
observed.

* Common cause X & Z - Y : active if and only if Z is not
observed.

* Common effect X > Z < Y : active if and only if either Z or
one of Z’s descendants is observed

Definition : Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-
separated given Z, denoted d-sep(X;Y | Z), if there is no active trail between any
node X € Xand Y € Y given Z.

A Ce i e ZNITANNALL NYNANC N1 C
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What is in [(G) ---
Global Markov properties of BN

« X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to
any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary
conditions):

O=@ -0 O—0O—+-C
= e Defn: I{6)=all independence properties
@ ® that correspond to d-separation:
A ﬁ
O
oS 5o 1(G) = {X L Z|Y : dsep, (X;Z|1))|

e D-separation is sound and complete

X ® Z
Q\/Q Q\/Q (more details later)
7/ \\ /Y
O
-

© Eric Xing @ CMU, 2005-2015 45
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Summary:
Representing Multivariate Distribution

e Representation: what is the joint probability dist. on multiple variables?

P(X,, X5, X5, X4, X5, X, X7,Xg,)
e How many state configurations in total? --- 28

e Aretheyall needed to be represented?
e Do we get any scientific/medical insight?

LD ] [ E ]

e Factored representation: the chain-rule

P(XIBXZ’X'J”X4’X5’X6’X7’X8)
:P(XI)P(XZ ‘XI)P(X3 ‘XlaXZ)P(X4 ‘X1>X2:X3)P(X5 ’X17X2>X39X4)P(X6 ‘X1>X27X37X4:X5)
P(X7‘X1>X2>X3>X4:X5aX6)P(X8|X1:X2:X3:X4aX5>X6’X7)

e This factorization is true for any distribution and any variable ordering

e Do we save any parameterization cost?

e If X/'s are independent: (P(X;/ )= P(X)))

P(Xy, X X g X Koo X X7 Xs)
= P(X;)P(X,)P(X3)P(X,;)P(X5)P(Xs)P(X;)P(Xg) = [ P(X)) *What do we lose?

eWhat do we gain?
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Minimum [-MAP

 Complete graph is a (trivial) I-map for any distribution, yet it does not
reveal any of the independence structure in the distribution.

* Meaning that the graph dependence is arbitrary, thus by careful
parameterization an dependencies can be captured

 We want a graph that has the maximum possible [(G), yet still < I(P)

* Defn : A graph object G is a minimal I-map for a set of independencies
| if it is an I-map for |, and if the removal of even a single edge from G
renders it not an I-map.



Minimum [-MAP Is not unigue

(b)

48
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Summary of BN semantics

* Defn : A Bayesian network is a pair (G, P) where P factorizes over G,
and where P is specified as set of CPDs associated with G’s nodes.

* Conditional independencies imply factorization

* Factorization according to G implies the associated conditional
independencies.

* Are there other independences that hold for every distribution P that
factorizes over G?



