Deep Learning

Kayhan Batmanghelich

Slides: Matt Gormley

Motivation

Why is everyone talking about Deep Learning?

- Because a lot of money is invested in it...
- DeepMind: Acquired by Google for $\$ \mathbf{4 0 0}$ million
- DNNResearch: Three person startup (including Geoff Hinton) acquired by Google for unknown price tag
- Ersatz, MetaMind, Nervana, Skylab: Deep Learning startups commanding millions
 of VC dollars

(1.) MetaMind

- Because it made the front page of the New York Times

Motivation

Why is everyone talking about Deep Learning?

Deep learning:

- Has won numerous pattern recognition competitions
- Does so with minimal feature engineering

This wasn't always the case!
Since 1980s: Form of models hasn't changed much, but lots of new tricks...

- More hidden units
- Better (online) optimization
- New nonlinear functions (ReLUs)
- Faster computers (CPUs and GPUs)

Background

A Recipe for Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function
$\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$
- Loss function
$\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}$

Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for

Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function
$\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}$

4. Train with SGD:
(take small steps opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

A Recine for

Background

Gradients

1. Given training dat

$$
\left\{\boldsymbol{x}_{i}, y_{i}\right\}_{i=1}^{N}
$$

Backpropagation can compute this gradient!
And it's a special case of a more general algorithm called reverse-
mode automatic differentiation that

- Decision functior can compute the gradient of any $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$ differentiable function efficiently!
- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

2. Choose each of t

opp-site the gradient)

$-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)$

A Recine for

Goals for Today's Lecture

1. 2. Explore a new class of decision functions
(Deep Nets)
1. Consider variants of this recipe for training

- Decision function

Train with SGD:
 ke small steps opposite the gradient)

$\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$

- Loss function

$$
\ell\left(\hat{y}, y_{i}\right) \in \mathbb{R} \quad \theta^{(t+1)}=\theta^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Outline

- Motivation
- Deep Neural Networks (DNNs)
- Background: Decision functions
- Background: Neural Networks
- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
- Sigmoid Belief Network
- Contrastive Divergence learning
- Restricted Boltzman Machines (RBMs)
- RBMs as infinitely deep Sigmoid Belief Nets
- Learning DBNs
- Deep Boltzman Machines (DBMs)
- Boltzman Machines
- Learning Boltzman Machines
- Learning DBMs

Outline

- Motivation
- Deep Neural Networks (DNNs)
- Background: Decision functions
- Background: Neural Networks
- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
- Sigmoid Belief Network
- Contrastive Divergence learning
- Restricted Boltzman Machines (RBMs)
- RBMs as infinitely deep Sigmoid Belief Nets
- Learning DBNs
- Deep Boltzman Machines (DBMs)
- Boltzman Machines
- Learning Boltzman Machines
- Learning DBMs

Decision Functions

Linear Regression

Output

$$
y=f_{\boldsymbol{\theta}}(\boldsymbol{x})=h(\boldsymbol{\theta} \cdot \boldsymbol{x})
$$

$$
\text { where } h(a)=a
$$

Decision
Functions

Linear Regression

Decision
Functions

Linear Regression

Decision Functions

Linear Regression

Output

$$
y=f_{\boldsymbol{\theta}}(\boldsymbol{x})=h(\boldsymbol{\theta} \cdot \boldsymbol{x})
$$

$$
\text { where } h(a)=a
$$

Decision Functions

Logistic Regression

$$
y=f_{\boldsymbol{\theta}}(\boldsymbol{x})=h(\boldsymbol{\theta} \cdot \boldsymbol{x})
$$

Output
where $h(a)=\frac{1}{1+\exp (a)}$

Decision Functions

Neural Network

Decision Functions

Multi-Class Output

Decision
 Functions

Deeper Networks

This lecture:

Decision
 Functions

Deeper Networks

This lecture:

Decision
 Functions

Deeper Networks

This lecture: ${ }^{\text {oupouc}}$ Making the neural networks deeper

Decision
Functions

Different Levels of

 AbstractionFeature representation

3rd layer
"Objects"

2nd layer
"Object parts"

1st layer
"Edges"

Pixels

Decision

Functions

Face Recognition:

- Deep Network can build up increasingly higher levels of abstraction
- Lines, parts, regions

Different Levels of

 AbstractionFeature representation

3rd layer
"Objects"

2nd layer
"Object parts"

1st layer
"Edges"

Pixels

Decision
Functions

Different Levels of Abstraction

Feature representation

2nd layer "Object parts"

1st layer
"Edges"

Pixels

A Recine for

Goals for Today's Lecture

1. 2. Explore a new class of decision functions
(Deep Neural Networks)
1. Consider variants of this recipe for training

- Decision function

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{y}, y_{i}\right) \in \mathbb{R} \quad \theta^{(t+1)}=\theta^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

4. Train with SGD:
(take small steps
opposite the gradient)

Training

Idea \#1: No pre-training

- Idea \#1: (Just like a shallow network)
- Compute the supervised gradient by backpropagation.
- Take small steps in the direction of the gradient (SGD)

Training

Backpropagation

Backpropagation

 is just repeated application of the chain rule fromCalculus 101.

Chain Rule:
$\frac{d y_{i}}{d x_{k}}=\sum_{j=1}^{J} \frac{d y_{i}}{d u_{j}} \frac{d u_{j}}{d x_{k}}$,

$$
\forall i, k
$$

Training

Backpropagation

Forward
$\mathbf{A}^{2}=y^{*} \log q+\left(1-y^{*}\right) \log (1-\stackrel{*}{q})$
$q=\frac{1}{1+\exp (-a)} g$
$a=\sum_{j=0}^{D} \theta_{j} x_{j}$

Backward

$$
\begin{aligned}
& \frac{d J}{d q}=\frac{y^{*}}{q}+\frac{\left(1-y^{*}\right)}{q-1} \\
& \frac{d J}{d a}=\frac{d J}{d q} \frac{d q}{d a}, \frac{d q}{d a}=\frac{\exp (a)}{(\exp (a)+1)^{2}} \\
& \frac{d J}{d \theta_{j}}=\frac{d J}{d a} \frac{d a}{d \theta_{j}}, \frac{d a}{d \theta_{j}}=x_{j} \\
& \frac{d J}{d x_{j}}=\frac{d J}{d a} \frac{d a}{d x_{j}}, \frac{d a}{d x_{j}}=\theta_{j}
\end{aligned}
$$

Training

Backpropagation

$$
f_{1}\left(f _ { 2 } \left(f_{3}(\cdots)\right.\right.
$$

What does this picture actually mean?

Training

Backpropagation

Case 2:
Neural Network

Forward
$J=y^{*} \log q+\left(1-y^{*}\right) \log (1-q)$

$$
q=\frac{1}{1+\exp (-b)}
$$

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

$$
z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}
$$

$$
a_{j}=\sum^{M} \alpha_{j i} x_{i}
$$

Backward

$$
\begin{aligned}
& \frac{d J}{d q}=\frac{y^{*}}{q}+\frac{\left(1-y^{*}\right)}{q-1} \\
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (b)}{(\exp (b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j} \\
& \frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(a_{j}\right)}{\left(\exp \left(a_{j}\right)+1\right)^{2}} \\
& \frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i} \\
& \frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}
\end{aligned}
$$

Training

Idea \#1: No pre-training

- Idea \#1: (Just like a shallow network)
- Compute the supervised gradient by backpropagation.
- Take small steps in the direction of the gradient (SGD)

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Idea \#1: No pre-training

Idea \#1: (Just like a shallow network)

- Compute the supervised gradient by backpropagation.
- Take small steps in the direction of the gradient (SGD)
- What goes wrong?
A. Gets stuck in local optima
- Nonconvex objective
- Usually start at a random (bad) point in parameter space
B. Gradient is progressively getting more dilute
- "Vanishing gradients"

Training

Problem A:

Nonconvexity

- Where does the nonconvexity come from?
- Even a simple quadratic $z=x y$ objective is nonconvex:

Training

Nonconvexity

- Where does the nonconvexity come from?
- Even a simple quadratic $z=x y$ objective is nonconvex:

X

Training

Problem A:
 Nonconvexity

Stochastic Gradient Descent...
... climbs to the top of the nearest hill...

Training

Problem A:
 Nonconvexity

Stochastic Gradient Descent...
... climbs to the top of the nearest hill...

Training

Problem A:
 Nonconvexity

Stochastic Gradient Descent...
...climbs to the top of the nearest hill...

Training

Problem A:
 Nonconvexity

Stochastic Gradient Descent...
... climbs to the top of the nearest hill...

Training

Problem A: Nonconvexity

Stochastic Gradient Descent...
... climbs to the top of the nearest hill...
... which might not lead to the top of the mountain

Training

Problem B:

Vanishing Gradients

The gradient for an edge at the base of the network depends on the gradients of many edges above it

The chain rule multiplies many of these partial derivatives together

Training

Problem B:

Vanishing Gradients

The gradient for an edge at the base of the network depends on the gradients of many edges above it

The chain rule multiplies many of these partial derivatives together

Hidden Layer

Output

Hidden Layer

Hidden Layer

Training

Problem B:

Vanishing Gradients

The gradient for an edge at the base of the network depends on the gradients of many edges above it

The chain rule multiplies many of these partial derivatives together a

Output

Hidden Layer

Hidden Layer

Training

Idea \#2: Supervised Pre-training

- Idea \#2: (Two Steps)
- Train each level of the model in a greedy way
- Then use our original idea

1. Supervised Pre-training

- Use labeled data
- Work bottom-up
- Train hidden layer 1. Then fix its parameters.
- Train hidden layer 2. Then fix its parameters.
- Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning

- Use labeled data to train following "Idea \#1"
- Refine the features by backpropagation so that they become tuned to the end-task

Training

Idea \#2: Supervised Pre-training

Idea \#2: (Two Steps)
 - Train each level of the model in a greedy way
 - Then use our original idea

Training

Idea \#2: Supervised Pre-training

Idea \#2: (Two Steps)

- Train each level of the model in a greedy way
- Then use our original idea

Training

Idea \#2: Supervised Pre-training

Training

Idea \#2: Supervised Pre-training

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Idea \#3: Unsupervised Pre-training

- Idea \#3: (Two Steps)
- Use our original idea, but pick a better starting point
- Train each level of the model in a greedy way

1. Unsupervised Pre-training

- Use unlabeled data
- Work bottom-up
- Train hidden layer 1. Then fix its parameters.
- Train hidden layer 2. Then fix its parameters.
- Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning

- Use labeled data to train following "Idea \#1"
- Refine the features by backpropagation so that they become tuned to the end-task

Ine solution:

Unsupervised pretraining

Unsupervised pre-

 training of the first layer:- What should it predict?
- What else do we observe?
- The input!

Unsupervised pretraining

Unsupervised pre-

 training of the first layer:- What should it predict?
- What else do we observe?
- The input!

This topology defines an Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
$-x^{\prime}$ is the reconstruction of x

- Loss = \|x - DECODER(ENCODER(x)) $\|^{2}$
- Train with the same backpropagation algorithm for 2-layer Neural Networks with x_{m} as both input and output.

DECODER: $x^{\prime}=h\left(W^{\prime} z\right)$

ENCODER: $\mathrm{z}=\mathrm{h}(\mathrm{Wx})$

The solution: Unsupervised pre-training

Unsupervised pretraining

- Work bottom-up
- Train hidden layer 1.

Then fix its parameters.

- Train hidden layer 2. Then fix its parameters.
- ...

Hidden Layer

- Train hidden layer n. Then fix its parameters.

The solution: Unsupervised pre-training

Unsupervised pretraining

- Work bottom-up
- Train hidden layer 1. Then fix its parameters.
- Train hidden layer 2. Then fix its parameters.
- Train hidden layer n. Then fix its parameters.

The solution: Unsupervised pre-training

Unsupervised pretraining

- Work bottom-up
- Train hidden layer 1.

Then fix its parameters.

- Train hidden layer 2. Then fix its parameters.
- Train hidden layer n. Then fix its parameters.

The solution:
 Unsupervised pre-training

Unsupervised pretraining

- Work bottom-up
- Train hidden layer 1. Then fix its parameters.
- Train hidden layer 2. Hidden Layer Then fix its parameters.
- Train hidden layer n. Then fix its parameters.
Supervised fine-tuning Backprop and update all parameters

Deep Network Training

- Idea \#1:

1. Supervised fine-tuning only

- Idea \#2:

1. Supervised layer-wise pre-training
2. Supervised fine-tuning

- Idea \#3:

1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training

Comparison on MNIST

- Results from Bengio et al. (2006) on MNIST digit classification task
- Percent error (lower is better)

Training Is layer-wise pre-training always necessary?

In 2010, a record on a hand-writing recognition task was set by standard supervised backpropagation (our Idea \#1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)

Deep Learning

- Goal: learn features at different levels of abstraction
- Training can be tricky due to...
- Nonconvexity
- Vanishing gradients
- Unsupervised layer-wise pre-training can help with both!

Outline

- Motivation
- Deep Neural Networks (DNNs)
- Background: Decision functions
- Background: Neural Networks
- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
- Sigmoid Belief Network
- Contrastive Divergence learning
- Restricted Boltzman Machines (RBMs)
- RBMs as infinitely deep Sigmoid Belief Nets
- Learning DBNs
- Deep Boltzman Machines (DBMs)
- Boltzman Machines
- Learning Boltzman Machines
- Learning DBMs

Question:

How does this relate to Graphical Models?

The first "Deep Learning" papers in 2006 were innovations in training a particular flavor of Belief Network.

Those models happen to also be neural nets.

DBNs

MNIST Digit Generation

- This section: Suppose you want to build a generative model capable of explaining handwritten digits
- Goal:
- To have a model $p(x)$ from which we can sample digits that look realistic
- Learn unsupervised hidden representation of an image

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	7	3	3	3	8	3
4	4	4	4	4	4	4	4	4	1
5	5	5	5	5	5	5	5	5	3
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
4	9	9	5	9	9	9	9	9	9

Sigmoid Belief Networks

- Directed graphical model of binary variables in fully connected layers
- Only bottom layer is observed
- Specific parameterization of the conditional probabilities:
$p\left(x_{i} \mid \operatorname{parents}\left(x_{i}\right)\right)=$

$$
\frac{1}{1+\exp \left(-\sum_{\substack{\text { Unknown Params }}}^{\left.w_{i j} x_{j}\right)}\right.}
$$

A bit of (relevant) digression: Contrastive Divergence

Contrastive Divergence Training

Contrastive Divergence is a general tool for learning a generative distribution, where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model:

Contrastive Divergence

 Training$$
\begin{aligned}
& \frac{\partial \log Z(w)}{\partial w}=\frac{1}{Z(w)} \frac{\partial Z(w)}{\partial w} \\
& =\frac{1}{Z(w)} \frac{\partial}{\partial w} \int \underline{P_{w}^{*}(x) d x}==\frac{1}{Z(w)} \int \frac{\partial}{\partial w^{*} c_{w}} \\
& =P^{\left.\frac{1}{\cos }\right)} \int \frac{\frac{\partial}{r^{N}} P^{*}(x)}{P^{*}(x)} P^{\alpha}(x) d x \\
& =\iint_{\partial \int \omega^{*}(x)}^{\partial P^{*}} P(x) d x=\mathbb{E}[\sim \\
& =\left\langle\frac{\partial \log P_{w}^{*}(\lambda)}{\partial w}\right\rangle_{x \sim P_{w}(x)} .
\end{aligned}
$$

Contrastive Divergence Training

Contrastive Divergence is a general tool for learning a generative distribution, where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model: $\max _{w} \ell(\mathcal{D} ; w)$
w

- A hurdle: many MCMC cycles required to compute the second term.
- Hinton et al. assert that only a few MCMC cycles would be needed to calculate an approximate gradient.

DiNs

Contrastive Divergence Training

Another view:

$$
\begin{aligned}
\frac{\partial}{\partial w} \log P^{\star}(\mathbf{v}) & =\frac{1}{P^{\star}(\mathbf{v})} \frac{\partial}{\partial w} P^{\star}(\mathbf{v}) \\
& =\frac{1}{P^{\star}(\mathbf{v})} \frac{\partial}{\partial w} \sum_{\mathbf{h}} P^{\star}(\mathbf{v}, \mathbf{h}) \\
& =\sum_{\mathbf{h}} \frac{1}{P^{\star}(\mathbf{v})} \frac{\partial}{\partial w} P^{\star}(\mathbf{v}, \mathbf{h}) \\
& =\sum_{\mathbf{h}} \underbrace{\frac{P^{\star}(\mathbf{v}, \mathbf{h})}{P^{\star}(\mathbf{v})} \frac{\partial}{\partial w} \log P^{\star}(\mathbf{v}, \mathbf{h})} \\
& =\underbrace{\sum_{\mathbf{h}} P^{\star}(\mathbf{h} \mid \mathbf{v}}_{\text {av. over posterior! }} \frac{\frac{\partial}{\partial w} \log P^{\star}(\mathbf{x})}{}\left(W_{\mathbf{7}} \mathbf{h}\right)=\boldsymbol{又}
\end{aligned}
$$

DBNs

Contrastive Divergence Training

Another view:

$$
\begin{aligned}
\frac{\partial}{\partial w} \log Z & =\frac{1}{Z} \frac{\partial}{\partial w} \sum_{\mathbf{v}} \sum_{\mathbf{h}} P^{\star}(\mathbf{v}, \mathbf{h}) \\
& =\frac{1}{Z} \sum_{\mathbf{v}} \sum_{\mathbf{h}} \frac{\partial}{\partial w} P^{\star}(\mathbf{v}, \mathbf{h}) \\
& =\frac{1}{Z} \sum_{\mathbf{v}} \sum_{\mathbf{h}} P^{\star}(\mathbf{v}, \mathbf{h}) \frac{\partial}{\partial w} \log P^{\star}(\mathbf{v}, \mathbf{h}) \\
& =\underbrace{\sum_{\mathbf{v}} \sum_{\mathbf{h}} P(\mathbf{v}, \mathbf{h})}_{\text {average over joint! }} \frac{\partial}{\partial w} \log P^{\star}(\mathbf{v}, \mathbf{h})
\end{aligned}
$$

DBNs

Contrastive Divergence Training

Another view:
gradient as a whole

$$
\frac{\partial}{\partial w} \log L \propto
$$

Another way to write it:

Back to Sigmoid BN

Contrastive Divergence Training

For a belief net the joint is automatically normalised: Z is a constant 1

- 2nd term is zero!
- for the weight $w_{i j}$ from j into i, the gradient $\frac{\partial \log L}{\partial w_{i j}}=\left(x_{i}-p_{i}\right) x_{j}$
- stochastic gradient ascent:

$$
\Delta w_{i j} \propto \underbrace{\left(x_{i}-p_{i}\right) x_{j}}_{\text {the "delta rule" }}
$$

P_{i}
x_{i}
So this is a stochastic version of the EM algorithm, that you may have heard of. We iterate the following two steps:

E step: get samples from the posterior

M step: apply the learning rule that makes them more likely

- In practice, applying CD to a Deep Sigmoid Belief Nets fails
- Sampling from the posterior of many (deep) hidden layers doesn't approach the equilibrium distribution quickly enough
- Take home summary: Sigmoid BN are easy to sample from as a generative model, but hard to learn

Note: this is a GM diagram not a NN!

How about undirected models?

DBNs

Boltzman Machines

- Undirected graphical model of binary variables with pairwise potentials
- Parameterization of the potentials:

$$
\psi_{i j}\left(x_{i}, x_{j}\right)=
$$

$$
\left.\exp \left(x_{i} W_{i j}\right) x_{j}\right)
$$

(In English: higher value of parameter W_{ij} leads to higher correlation between X_{i} and X_{j} on value 1)

Restricted Boltzman
 Machines

- Assume visible units are one layer, and hidden units are another.
- Throw out all the connections within each layer.

- $h_{j} \Perp h_{k} \mid \mathbf{v}$
- the posterior $P(\mathbf{h} \mid \mathbf{v})$ factors
c.f. in a belief net, the prior $P(\mathbf{h})$ factors

Machines

Alternating Gibbs sampling

Since none of the units within a layer are interconnebted, we can do Gibbs sampling by updating the whole layer at a time.

Restricted Boltzman Machines

learning in an RBM

Repeat for all data:
(1) start with a training vector on the visible units

anti-Hebbian
(2) then alternate between updating all the hidden units in parallel and updating all the visible units in parallel

$$
\Delta w_{i j}=\eta\left[\left\langle v_{i} h_{j}\right\rangle^{0}-\left\langle v_{i} h_{j}\right\rangle^{\infty}\right]
$$

restricted connectivity is trick \#1:

it saves waiting for equilibrium in the clamped phase.

DBNs

Restricted Boltzman Machines

trick \# 2: curtail the Markov chain during learning

Repeat for all data:
(1) start with a training vector on the visible units
(2) update all the hidden units in parallel
(3) update all the visible units in parallel to get a "reconstruction"
(4) update the hidden units again

$$
\Delta w_{i j}=\eta\left[\left\langle v_{i} h_{j}\right\rangle^{0}-\left\langle v_{i} h_{j}\right\rangle^{1}\right]
$$

This is not following the correct gradient, but works well in practice. Geoff Hinton calls it learning by "contrastive divergence".

DBNs

Deep Belief Networks (DBNs)

RBMs are equivalent to infinitely deep belief networks
to generate:

sampling from this is the same as sampling from the network on the right.
and so on...

DBNs

Deep Belief Networks (DBNs)

RBMs are equivalent to infinitely deep belief networks

- So when we train an RBM, we're really training an $\infty^{l y}$ deep sigmoid belief net!
- It's just that the weights of all layers are tied.

Let's apply it on MNIST

Unsupervised Learning of DBNs

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in greedy layerwise fashion
II. Unroll the RBMs to create an autoencoder (i.e. bottom-up and top-down weights are untied)
III. Fine-tune the parameters using backpropagation

Unsupervised Learning of DBNs

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in

Unsupervised Learning of DBNs

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in greedy layerwise fashion
II. Unroll the RBMs to create an autoencoder (i.e. bottom-up and top-down weights are untied)
III. Fine-tune the parameters using backpropagation

DBNs

Unsupervised Learning of DBNs

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in greedy layerwise fashion
II. Unroll the RBMs to create an autoencoder (i.e. bottom-up and top-down weights are untied)
III. Fine-tune the parameters using backpropagation

Fine-tuning

Supervised Learning of DBNs

Setting B: DBN classifier
I. Pre-train a stack of RBMs in greedy layerwise fashion (unsupervised)
II. Fine-tune the parameters using backpropagation by minimizing classification error on the training data

DBNs

MNIST Digit Generation

$\left.\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} \begin{array}{l}\text { real } \\ \text { data }\end{array}\right)$

- Comparison of deep autoencoder, logistic PCA, and PCA
- Each method projects the real data down to a vector of 30 real numbers
- Then reconstructs the data from the low-dimensional projection

DBNs

MNIST Digit Recognition

Examples of correctly recognized handwritten digits that the neural network had never seen before

Experimental evaluation of DBN with greedy layerwise pretraining and fine-tuning via the wakesleep
algorithm

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & (111 & 11 & 2 \\
2 & 7 & 2 & \alpha & 2 & 2 & 3 & 3 & 3 \\
3 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 \\
4 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 & 9 & 4 & 9 & 9 & \text { lis very } \\
\text { good }
\end{array}
$$

MNIST Digit Recognition

How well does it discriminate on MNIST test set with no extra information about geometric distortions?

- Generative model based on RBM's
1.25\%
- Support Vector Machine (Decoste et. al.)
1.4\%
- Backprop with 1000 hiddens (Platt)
- Backprop with 500 -->300 hiddens ~1.6\%
- K-Nearest Neighbor
~1.6\%
~ 3.3%
- See Le Cun et. al. 1998 for more results
- Its better than backprop and much more neurally plausible because the neurons only need to send one kind of signal, and the teacher can be another sensory input.

Outline

- Motivation
- Deep Neural Networks (DNNs)
- Background: Decision functions
- Background: Neural Networks
- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
- Sigmoid Belief Network
- Contrastive Divergence learning
- Restricted Boltzman Machines (RBMs)
- RBMs as infinitely deep Sigmoid Belief Nets
- Learning DBNs
- Deep Boltzman Machines (DBMs)
- Boltzman Machines
- Learning Boltzman Machines
- Learning DBMs

DBMs

Deep Boltzman Machines

- DBNs are a hybrid
directed/undi rected graphical model
- DBMs are a purely undirected graphical model

Deep Belief Network

Deep Boltzmann Machine

DBMs

Deep Boltzman Machines

Deep Boltzmann Machine

Can we use the same techniques to train a DBM?

DBMs

Learning Standard Boltzman Machines

- Undirected graphical model of binary variables with pairwise potentials
- Parameterization of the potentials:

$$
\psi_{i j}\left(x_{i}, x_{j}\right)=
$$

$$
\exp \left(x_{i} W_{i j} x_{j}\right)
$$

(In English: higher value of parameter W_{ij} leads to higher correlation between X_{i} and X_{i} on value 1)

Learning Standard Boltzman Machines $=>\log$

Visible units:

$$
\mathbf{v} \in\{0,1\}^{D}
$$

Hidden units: $\quad \mathbf{h} \in\{0,1\}^{P}$
Likelihood:

\[

\]

$E(-N, h, \theta$ (0)

$$
\log \phi(\cdot)=x_{i} w_{i j} x_{j}
$$

DBMs

Learning Standard Boltzman Machines

(Old) idea from Hinton \& Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.
Delta updates to each of nodel parameders:

$$
\begin{aligned}
& \Delta \mathbf{W}=\alpha(\underbrace{\mathrm{E}_{\mathrm{a}}}_{\mathrm{E}_{P_{\text {data }}}\left[\mathbf{v h}^{\top}\right]}-\mathrm{E}_{\mathrm{P}_{\text {model }}}\left[\mathbf{v h}^{\top}\right]), \\
& \Delta \mathbf{L}=\alpha\left(\underset{\mathrm{E}_{P_{\text {data }}}\left[\mathbf{v v}^{\top}\right]}{\mathrm{E}^{\top}}-\widetilde{\mathrm{E}_{P_{\text {model }}}\left[\mathbf{v V}^{\top}\right]}\right), \\
& \Delta \dot{\mathbf{J}}=\alpha\left(\mathrm{E}_{P_{\text {data }}}\left[\mathbf{h}^{\top}\right]-\mathrm{E}_{P_{\text {model }}}\left[\mathbf{h}^{\top}\right]\right),
\end{aligned}
$$

Full conditionals for Gibbs sampler:

$$
\begin{aligned}
& p\left(h_{j}=1 \mid \mathbf{v}, \mathbf{h}_{-j}\right)=\sigma\left(\sum_{i=1}^{D} W_{i j} v_{i}+\sum_{m=1 \backslash j}^{P} J_{j m} h_{j}\right) \\
& p\left(v_{i}=1 \mid \mathbf{h}, \mathbf{v}_{-i}\right)=\sigma\left(\sum_{j=1}^{P} W_{i j} h_{j}+\sum_{k=1 \backslash i}^{D} L_{i k} v_{j}\right)
\end{aligned}
$$

DBMs

Learning Standard Boltzman Machines

(Old) idea from Hinton \& Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.
Delta updates to each of model parameters:

$$
\begin{aligned}
\Delta \mathbf{W} & =\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{L} & =\alpha\left(\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{J} & =\alpha\left(\left\langle\mathbf{h h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{h} \mathbf{h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
\end{aligned}
$$

But it doesn't work very well!

The MCMC chains take too long to mix - especially for the data distribution.

Full conditionals for Gibbs sampler:

$$
\begin{aligned}
p\left(h_{j}=1 \mid \mathbf{v}, \mathbf{h}_{-j}\right) & =\sigma\left(\sum_{i=1}^{D} W_{i j} v_{i}+\sum_{m=1 \backslash j}^{P} J_{j m} h_{j}\right) \\
p\left(v_{i}=1 \mid \mathbf{h}, \mathbf{v}_{-i}\right) & =\sigma\left(\sum_{j=1}^{P} W_{i j} h_{j}+\sum_{k=1 \backslash i}^{D} L_{i k} v_{j}\right)
\end{aligned}
$$

DBMs

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:

$$
\begin{aligned}
\Delta \mathbf{W} & =\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{L} & =\alpha\left(\left\langle\mathbf{v v}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{J} & =\alpha\left(\left\langle\mathbf{h h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{h} \mathbf{h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
\end{aligned}
$$

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:

$$
\Delta \mathbf{W}=\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
$$

Step 1) Approximate the data distribution.

Mean-field approximation:

$$
\begin{aligned}
& q(\mathbf{h} ; \mu)=\prod_{j=1}^{P} \underline{q\left(h_{i}\right)} \\
& q\left(h_{i}=1\right)=\mu_{i}
\end{aligned}
$$

Variational lower-bound of log-likelihood:

$$
\ln p(\mathbf{v} ; \theta) \geq \sum_{\mathbf{h}} q(\mathbf{h} \mid \mathbf{v} ; \mu) \ln p(\mathbf{v}, \mathbf{h} ; \theta)+\mathcal{H}(q)
$$

Fixed-point equations for variational params:

$$
\mu_{j} \leftarrow \sigma\left(\sum_{i} W_{i j} v_{i}+\sum_{m \backslash j} J_{m j} \mu_{m}\right)
$$

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:
$\Delta \mathbf{W}=\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)$

Step 2) Approximate the model distribution...

Why not use variational inference for the model expectation as well?
Difference of the two mean-field approximated expectations above would cause learning algorithm to maximize divergence between true and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

DBMs

Deep Boltzman Machines

- DBNs are a hybrid
directed/undi rected graphical model
- DBMs are a purely undirected graphical model

Deep Belief Network

Deep Boltzmann Machine

Learning Deep

Boltzman Machines

Can we use the same techniques to train a DBM?
I. Pre-train a stack of RBMs in greedy layerwise fashion (requires some caution to avoid double counting)
II. Use those parameters to initialize two step meanfield approach to learning full Boltzman machine (i.e. the full DBM)

Deep Boltzmann Machine

Document Clustering and Retrieval

Clustering Results

- Goal: cluster related documents
- Figures show projection to 2 dimensions
- Color shows true categories

Deep Learning

Lots to explore:

- Other nonlinear functions
- Rectified Linear Units (ReLUs)
- Popular (classic) architectures:
- Convolutional Neural Networks (CNN)
- Long-term Short-term Memory (LSTM)
- Modern architectures
- Stacked SVMs with random projections
- Sum-product Networks

