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Why is everyone talking 
about Deep Learning?

• Because a lot of money is invested in it…
– DeepMind:  Acquired by Google for $400 

million
– DNNResearch:  Three person startup 

(including Geoff Hinton) acquired by Google 
for unknown price tag

– Ersatz, MetaMind, Nervana, Skylab: 
Deep Learning startups commanding millions 
of VC dollars

• Because it made the front page of the 
New York Times
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Motivation



Why is everyone talking 
about Deep Learning?

Deep learning: 
– Has won numerous pattern recognition 

competitions
– Does so with minimal feature 

engineering
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Motivation

1960s

1980s

1990s

2006

2016

This wasn’t always the case!
Since 1980s:  Form of models hasn’t changed much, 
but lots of new tricks…

– More hidden units
– Better (online) optimization
– New nonlinear functions (ReLUs)
– Faster computers (CPUs and GPUs)



A Recipe for 
Machine Learning

1. Given training data:
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Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Deep Nets)

2. Consider variants of this recipe for training



Outline
• Motivation
• Deep Neural Networks (DNNs)

– Background: Decision functions
– Background: Neural Networks
– Three ideas for training a DNN
– Experiments: MNIST digit classification

• Deep Belief Networks (DBNs)
– Sigmoid Belief Network
– Contrastive Divergence learning
– Restricted Boltzman Machines (RBMs)
– RBMs as infinitely deep Sigmoid Belief Nets
– Learning DBNs

• Deep Boltzman Machines (DBMs)
– Boltzman Machines
– Learning Boltzman Machines
– Learning DBMs
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Linear Regression
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Linear Regression
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Linear Regression
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Logistic Regression
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Neural Network
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Multi-Class Output
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Deeper Networks

This lecture:
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Deeper Networks

This lecture:
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Deeper Networks

This lecture: 
Making the 
neural 
networks 
deeper
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Different Levels of 
Abstraction

• We don’t know 
the “right” 
levels of 
abstraction

• So let the model 
figure it out!
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Decision 
Functions

Example from Honglak Lee (NIPS 2010)



Different Levels of 
Abstraction

Face Recognition:
– Deep Network 

can build up 
increasingly 
higher levels of 
abstraction

– Lines, parts, 
regions

23

Decision 
Functions

Example from Honglak Lee (NIPS 2010)



Different Levels of 
Abstraction
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Deep Neural Networks)

2. Consider variants of this recipe for training



Idea #1: No pre-training
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Training

� Idea #1: (Just like a shallow network)
� Compute the supervised gradient by backpropagation.
� Take small steps in the direction of the gradient (SGD)



Backpropagation
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Training

Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)
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Chain Rule:
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2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤ log q + (1 � y⇤) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)2

a =
DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤ log q + (1 � y⇤) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)2
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MX

i=0
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dJ

d↵ji
=

dJ

daj
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d↵ji
,
daj

d↵ji
= xi

dJ
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=

dJ
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daj
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,
daj
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=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji

and dJ
d�j

, but also the partial derivatives with respect to each
intermediate quantity dJ

daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi

.
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(F) Loss
J = 1

2(y � y(d))2

(E) Output (sigmoid)
y = 1

1+exp(b)

(D) Output (linear)
b =

PD
j=0 �jzj

(C) Hidden (sigmoid)
zj =

1
1+exp(aj)

, 8j

(B) Hidden (linear)
aj =

PM
i=0 ↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =
h✓(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) = 1

1+exp(a)
element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping
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What does this picture actually mean?
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Case 2:
Neural 
Network

2.2. NEURAL NETWORKS AND BACKPROPAGATION
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Idea #1: No pre-training
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Training

� Idea #1: (Just like a shallow network)
� Compute the supervised gradient by backpropagation.
� Take small steps in the direction of the gradient (SGD)



Comparison on MNIST
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 



Idea #1: No pre-training

• What goes wrong?
A. Gets stuck in local optima

• Nonconvex objective 
• Usually start at a random (bad) point in parameter space

B. Gradient is progressively getting more dilute
• “Vanishing gradients”

34

Training

� Idea #1: (Just like a shallow network)
� Compute the supervised gradient by backpropagation.
� Take small steps in the direction of the gradient (SGD)
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Nonconvexity

• Where does the nonconvexity come from?
• Even a simple quadratic z = xy objective is 

nonconvex:
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Stochastic Gradient
Descent…

…climbs to the top 
of the nearest hill…

Problem A:
NonconvexityTraining



38

Stochastic Gradient
Descent…

…climbs to the top 
of the nearest hill…

Problem A:
NonconvexityTraining



39

Stochastic Gradient
Descent…

…climbs to the top 
of the nearest hill…

Problem A:
NonconvexityTraining



40

Stochastic Gradient
Descent…

…climbs to the top 
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NonconvexityTraining
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Stochastic Gradient
Descent…

…climbs to the top 
of the nearest hill…

…which might not 
lead to the top of 
the mountain

Problem A:
NonconvexityTraining



Problem B:
Vanishing Gradients

The gradient for an edge 
at the base of the 
network depends on the 
gradients of many edges 
above it

The chain rule multiplies 
many of these partial 
derivatives together
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Idea #2: Supervised
Pre-training

1. Supervised Pre-training
– Use labeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
46

Training

� Idea #2: (Two Steps)
� Train each level of the model in a greedy way
� Then use our original idea



Idea #2: Supervised 
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Training

� Idea #2: (Two Steps)
� Train each level of the model in a greedy way
� Then use our original idea
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� Idea #2: (Two Steps)
� Train each level of the model in a greedy way
� Then use our original idea

Idea #2: Supervised 
Pre-training
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Idea #2: Supervised 
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� Idea #2: (Two Steps)
� Train each level of the model in a greedy way
� Then use our original idea
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Idea #2: Supervised 
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� Idea #2: (Two Steps)
� Train each level of the model in a greedy way
� Then use our original idea
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 



Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
53

Training

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way



The solution:
Unsupervised pre-

training

54
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Output

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.



The solution:
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training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.

58

…

…Input

Hidden Layer

…Hidden Layer

…’ ’ ’



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
Supervised fine-tuning
Backprop and update all 
parameters
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Deep Network Training 
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� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only



Comparison on MNIST
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 



Is layer-wise pre-training 
always necessary?
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Training

In 2010, a record on a hand-writing 
recognition task was set by standard supervised 
backpropagation (our Idea #1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)



Deep Learning

• Goal: learn features at different levels of 
abstraction

• Training can be tricky due to…
– Nonconvexity
– Vanishing gradients

• Unsupervised layer-wise pre-training can 
help with both!
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Outline
• Motivation
• Deep Neural Networks (DNNs)

– Background: Decision functions
– Background: Neural Networks
– Three ideas for training a DNN
– Experiments: MNIST digit classification

• Deep Belief Networks (DBNs)
– Sigmoid Belief Network
– Contrastive Divergence learning
– Restricted Boltzman Machines (RBMs)
– RBMs as infinitely deep Sigmoid Belief Nets
– Learning DBNs

• Deep Boltzman Machines (DBMs)
– Boltzman Machines
– Learning Boltzman Machines
– Learning DBMs
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How does this relate to 
Graphical Models?

The first “Deep Learning” papers in 2006 were
innovations in training a particular flavor of 
Belief Network.

Those models happen to also be neural nets.
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Question:



MNIST Digit Generation

• This section: Suppose you 
want to build a 
generative model 
capable of explaining 
handwritten digits

• Goal: 
– To have a model p(x) 

from which we can 
sample digits that look 
realistic

– Learn unsupervised
hidden representation of 
an image
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DBNs

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure from (Hinton et al., 2006)



what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid Belief Networks

• Directed graphical model of 
binary variables in fully 
connected layers 

• Only bottom layer is observed
• Specific parameterization of 

the conditional probabilities:
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DBNs

p(xi|parents(xi)) =

1

1 + exp(�
�

j wijxj)

Figure from Marcus Frean, MLSS Tutorial 2010

Note: this is a GM 
diagram not a NN!

Unknown Params



A bit of (relevant) digression: 
Contrastive Divergence

70



Contrastive Divergence 
Training

73

DBNs

Contrastive Divergence is a general tool for learning a generative distribution, 
where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model:

max
w

`(D;w)
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Contrastive Divergence is a general tool for learning a generative distribution, 
where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model:

max
w

`(D;w)
<latexit sha1_base64="HV/7XVC0FO31iI5+Cle2LNbYxaY=">AAACKHicbVDLSsNAFJ34rPEVdelmsBTaTUlEUHBhURcuK9gHNCFMptN26OTBzMRaQj7Hjb/iRkSRbv0SJ23A2npg4HDOucy9x4sYFdI0J9rK6tr6xmZhS9/e2d3bNw4OmyKMOSYNHLKQtz0kCKMBaUgqGWlHnCDfY6TlDW8yv/VIuKBh8CDHEXF81A9oj2IkleQaVyXbR09uMkqhzcI+rGe0rDQ5wIglt2lF/w0QxuatSziquEbRrJpTwGVi5aQIctRd493uhjj2SSAxQ0J0LDOSToK4pJiRVLdjQSKEh6hPOooGyCfCSaaHprCklC7shVy9QMKpOj+RIF+Ise+pZLamWPQy8T+vE8vehZPQIIolCfDso17MoAxh1hrsUk6wZGNFEOZU7QrxAHGEpepWVyVYiycvk+Zp1TKr1v1ZsXad11EAx+AElIEFzkEN3IE6aAAMnsEr+ACf2ov2pn1pk1l0RctnjsAfaN8/idamPQ==</latexit><latexit sha1_base64="HV/7XVC0FO31iI5+Cle2LNbYxaY=">AAACKHicbVDLSsNAFJ34rPEVdelmsBTaTUlEUHBhURcuK9gHNCFMptN26OTBzMRaQj7Hjb/iRkSRbv0SJ23A2npg4HDOucy9x4sYFdI0J9rK6tr6xmZhS9/e2d3bNw4OmyKMOSYNHLKQtz0kCKMBaUgqGWlHnCDfY6TlDW8yv/VIuKBh8CDHEXF81A9oj2IkleQaVyXbR09uMkqhzcI+rGe0rDQ5wIglt2lF/w0QxuatSziquEbRrJpTwGVi5aQIctRd493uhjj2SSAxQ0J0LDOSToK4pJiRVLdjQSKEh6hPOooGyCfCSaaHprCklC7shVy9QMKpOj+RIF+Ise+pZLamWPQy8T+vE8vehZPQIIolCfDso17MoAxh1hrsUk6wZGNFEOZU7QrxAHGEpepWVyVYiycvk+Zp1TKr1v1ZsXad11EAx+AElIEFzkEN3IE6aAAMnsEr+ACf2ov2pn1pk1l0RctnjsAfaN8/idamPQ==</latexit><latexit sha1_base64="HV/7XVC0FO31iI5+Cle2LNbYxaY=">AAACKHicbVDLSsNAFJ34rPEVdelmsBTaTUlEUHBhURcuK9gHNCFMptN26OTBzMRaQj7Hjb/iRkSRbv0SJ23A2npg4HDOucy9x4sYFdI0J9rK6tr6xmZhS9/e2d3bNw4OmyKMOSYNHLKQtz0kCKMBaUgqGWlHnCDfY6TlDW8yv/VIuKBh8CDHEXF81A9oj2IkleQaVyXbR09uMkqhzcI+rGe0rDQ5wIglt2lF/w0QxuatSziquEbRrJpTwGVi5aQIctRd493uhjj2SSAxQ0J0LDOSToK4pJiRVLdjQSKEh6hPOooGyCfCSaaHprCklC7shVy9QMKpOj+RIF+Ise+pZLamWPQy8T+vE8vehZPQIIolCfDso17MoAxh1hrsUk6wZGNFEOZU7QrxAHGEpepWVyVYiycvk+Zp1TKr1v1ZsXad11EAx+AElIEFzkEN3IE6aAAMnsEr+ACf2ov2pn1pk1l0RctnjsAfaN8/idamPQ==</latexit><latexit sha1_base64="HV/7XVC0FO31iI5+Cle2LNbYxaY=">AAACKHicbVDLSsNAFJ34rPEVdelmsBTaTUlEUHBhURcuK9gHNCFMptN26OTBzMRaQj7Hjb/iRkSRbv0SJ23A2npg4HDOucy9x4sYFdI0J9rK6tr6xmZhS9/e2d3bNw4OmyKMOSYNHLKQtz0kCKMBaUgqGWlHnCDfY6TlDW8yv/VIuKBh8CDHEXF81A9oj2IkleQaVyXbR09uMkqhzcI+rGe0rDQ5wIglt2lF/w0QxuatSziquEbRrJpTwGVi5aQIctRd493uhjj2SSAxQ0J0LDOSToK4pJiRVLdjQSKEh6hPOooGyCfCSaaHprCklC7shVy9QMKpOj+RIF+Ise+pZLamWPQy8T+vE8vehZPQIIolCfDso17MoAxh1hrsUk6wZGNFEOZU7QrxAHGEpepWVyVYiycvk+Zp1TKr1v1ZsXad11EAx+AElIEFzkEN3IE6aAAMnsEr+ACf2ov2pn1pk1l0RctnjsAfaN8/idamPQ==</latexit>

⌧
@

@w
logP ⇤

w(v)

�

v2D
<latexit sha1_base64="sRo0DaROFGwZCYx95OToyzziCS8="></latexit><latexit sha1_base64="sRo0DaROFGwZCYx95OToyzziCS8=">AAAE4XicrVRLixNBEJ5Noq7xsVk9eikMgUTcJSOCgq4s6sFjBLO7bCY7dDo9SbM9D6Z7MgnN3Lx4UMSr/8qbv8SrNQ83k2RVEBsG6vF9VV9V0zMKBJeq2/2+VanWrly9tn29fuPmrds7jd07R9KPQsr61Bd+eDIikgnusb7iSrCTIGTEHQl2PDp/leaPZyyU3PfeqUXAhi6ZeNzhlCgM2buVHy1L+BPo2TpO2pZL1JQSoV8nnXoLvXkaBosJUc49gxjTB5aMXFtbI0fPEMM9KEEwsCybYmAGSQcO4IIEswKDTGVPCyhoKMAPYQod+I9tnJBQDb0z/SBZa9WBBJ3TNsSQmsi2cPrVCsxRg7zQb0rs5dnTdtwBK+STqRpikZT3HP5IzMEvbD3bmA4L5KqtgISKE1HqkZSica46w5qJTvNJ4V5gsuDSjbH43ygr8OyeyiPMcVnjOd7QXjHlpVrXCCuyM93L+RFgSe4WtznHEesrlX/x1mT922rtRrO7380ObBpmYTSN4vTsxjdr7NPIZZ6igkg5MLuBGupUCBUMpUaSBYSekwkboOkRl8mhzl5oAi2MjMHxQ/xwi1m0zNDElXLhjhCZapTruTR4WW4QKefpUHMviBTzaN7IiQQoH9LnDmMeMqrEAg1CQ45agU4JblPhT6GOSzDXR940jh7tm9198+3j5uHLYh3bxj3jvtE2TOOJcWi8MXpG36DVs+r76sfqpxqtfah9rn3JoZWtgnPXWDm1rz8BlfyTFg==</latexit><latexit sha1_base64="sRo0DaROFGwZCYx95OToyzziCS8="></latexit><latexit sha1_base64="sRo0DaROFGwZCYx95OToyzziCS8="></latexit>

�
⌧
@ logP ⇤

w(v)

@w

�

v⇠Pw(v)
<latexit sha1_base64="1vp9L5jhs1ibhGsIyZdcGDm51TQ=">AAAE4XicrVRLixNBEJ5Noq7xldWjl8IQSMRdMiIo6MqiHjxGMLvLZrJDp9OTNNvzYLpnktDMzYsHRbz6r7z5S7xa8yCZJKuC2DBQj++r+qqanlEguFTd7o+dSrV25eq13ev1Gzdv3b7T2Lt7LP0opKxPfeGHpyMimeAe6yuuBDsNQkbckWAno4vXaf4kZqHkvvdeLQI2dMnE4w6nRGHI3qv8bFnCn0DP1rOkbblETSkR+k3SqbfQm6dhsJgQ5dxzmGH60JKRa2tr5OgYMdyDEgQDq7IpBmJIOnAISxLEBQaZyp4WUNBQgB/BFDrwH9s4IaEaeuf6YbLRqgMJOmdtmEFqItvC6dcrMEcN8kK/KbGfZ8/asw5YIZ9M1RCLpLwX8EdiDn5p63hrOiyQq7YCEipORKlHUorOctUZ1kx0mk8Kd4nJgit3hsX/RlmDZ/dUHmGOyxrPob5fDHmp1BI+Rvya6kz2anwEWJK7xWXGOOFyf+u6NmT922rtRrN70M0ObBtmYTSN4vTsxndr7NPIZZ6igkg5MLuBGupUCBUsqVuRZAGhF2TCBmh6xGVyqLMXmkALI2Nw/BA/3GIWLTM0caVcuCNEphrlZi4NXpYbRMp5NtTcCyLFPJo3ciIByof0ucOYh4wqsUCD0JCjVqBTgttU+FOo4xLMzZG3jePHB2b3wHz3pHn0qljHrnHfeGC0DdN4ahwZb42e0Tdo9bz6ofqp+rlGax9rX2pfc2hlp+DcM9ZO7dsvm9CTEA==</latexit><latexit sha1_base64="1vp9L5jhs1ibhGsIyZdcGDm51TQ="></latexit><latexit sha1_base64="1vp9L5jhs1ibhGsIyZdcGDm51TQ="></latexit><latexit sha1_base64="1vp9L5jhs1ibhGsIyZdcGDm51TQ="></latexit>

Computed from samples! Needs sampling!

• A hurdle:  many MCMC cycles required to compute the second term.
• Hinton et al. assert that only a few MCMC cycles would be needed to 

calculate an approximate gradient. 
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Another view:

Slide from Marcus Frean, MLSS Tutorial 2010
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Another view:

Slide from Marcus Frean, MLSS Tutorial 2010



Contrastive Divergence 
Training
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Another view:

Slide from Marcus Frean, MLSS Tutorial 2010



Back to Sigmoid BN
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Contrastive Divergence 
Training
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

example: sigmoid belief nets
For a belief net the joint is automatically normalised: Z is a constant 1

2nd term is zero!

for the weight wij from j into i, the gradient
@log L

@wij
= (xi � pi)xj

stochastic gradient ascent:

�wij / (xi � pi)xj| {z }
the ”delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

E step: get samples from the posterior
M step: apply the learning rule that makes them more likely

Marcus Frean (VUW) MLSS, ANU, 2010 20 / 75



what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid Belief Networks

• In practice, applying CD to a 
Deep Sigmoid Belief Nets fails

• Sampling from the posterior of 
many (deep) hidden layers 
doesn’t approach the 
equilibrium distribution quickly 
enough

• Take home summary: Sigmoid 
BN are easy to sample from as 
a generative model, but hard
to learn
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DBNs

Figure from Marcus Frean, MLSS Tutorial 2010

Note: this is a GM 
diagram not a NN!



How about undirected models?
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Boltzman Machines

• Undirected graphical 
model of binary 
variables with 
pairwise potentials

• Parameterization of 
the potentials:

83

DBNs

�ij(xi, xj) =

exp(xiWijxj)

(In English: higher value of parameter 
Wij leads to higher correlation between 
Xi and Xj on value 1)

Xi X1 X1

Xj

X1 X1



trick # 1: restrict the connections
Assume visible units are one layer, and hidden units are another.
Throw out all the connections within each layer.

hj ?? hk | v
the posterior P (h | v) factors
c.f. in a belief net, the prior P (h) factors
no explaining away

Marcus Frean (VUW) MLSS, ANU, 2010 41 / 75

Restricted Boltzman
Machines
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010



Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left �! right)

Marcus Frean (VUW) MLSS, ANU, 2010 42 / 75

Restricted Boltzman
Machines
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

t=0 t=1 t=N



Restricted Boltzman
Machines
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

learning in an RBM

Repeat for all data:
1 start with a training vector on the visible units
2 then alternate between updating all the hidden units in parallel and

updating all the visible units in parallel

�wij = ⌘
⇥
hvi hji0 � hvi hji1

⇤

restricted connectivity is trick #1:
it saves waiting for equilibrium in the clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 43 / 75



Restricted Boltzman
Machines
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Slide from Marcus Frean, MLSS Tutorial 2010

trick # 2: curtail the Markov chain during learning

Repeat for all data:
1 start with a training vector on the visible units
2 update all the hidden units in parallel
3 update all the visible units in parallel to get a “reconstruction”
4 update the hidden units again

�wij = ⌘
⇥
hvi hji0 � hvi hji1

⇤

This is not following the correct gradient, but works well in practice. Geoff
Hinton calls it learning by “contrastive divergence”.

Marcus Frean (VUW) MLSS, ANU, 2010 44 / 75



1: RBMs are infinitely deep belief nets

sampling from this is the same as sampling
from the network on the right.

Marcus Frean (VUW) MLSS, ANU, 2010 52 / 75

Deep Belief Networks 
(DBNs)
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

RBMs are equivalent to infinitely deep belief networks



Deep Belief Networks 
(DBNs)
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DBNs

Slide from Marcus Frean, MLSS Tutorial 2010

RBMs are equivalent to infinitely deep belief networksin fact, all of these are the same animal...

So when we train an RBM, we’re really training an1ly deep sigmoid
belief net!
It’s just that the weights of all layers are tied.

Marcus Frean (VUW) MLSS, ANU, 2010 53 / 75



Let’s apply it on MNIST
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Unsupervised Learning 
of DBNs
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Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in 

greedy layerwise fashion 
II. Unroll the RBMs to create 

an autoencoder (i.e. 
bottom-up and top-down 
weights are untied)

III. Fine-tune the parameters 
using backpropagation



Unsupervised Learning 
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Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in 

greedy layerwise fashion 
II. Unroll the RBMs to create 

an autoencoder (i.e. 
bottom-up and top-down 
weights are untied)

III. Fine-tune the parameters 
using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder

I. Pre-train a stack of RBMs in 

greedy layerwise fashion 

II. Unroll the RBMs to create 

an autoencoder (i.e. 

bottom-up and top-down 

weights are untied)

III. Fine-tune the parameters 

using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Figure from (Hinton & Salakhutinov, 2006)

Setting A: DBN Autoencoder
I. Pre-train a stack of RBMs in 

greedy layerwise fashion 
II. Unroll the RBMs to create 

an autoencoder (i.e. 
bottom-up and top-down 
weights are untied)

III. Fine-tune the parameters 
using backpropagation

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Figure from (Hinton & Salakhutinov, 2006)

Setting B: DBN classifier

I. Pre-train a stack of RBMs 
in greedy layerwise
fashion (unsupervised) 

II. Fine-tune the parameters 
using backpropagation by 
minimizing classification 
error on the training data



MNIST Digit Generation
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• Comparison of deep autoencoder, logistic PCA, and PCA
• Each method projects the real data down to a vector of 

30 real numbers
• Then reconstructs the data from the low-dimensional 

projection

Figure from Hinton, NIPS Tutorial 2007

A comparison of methods for compressing

digit images to 30 real numbers.

real

data

30-D

deep auto

30-D logistic

PCA

30-D

PCA



MNIST Digit Recognition
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Slide from Hinton, NIPS Tutorial 2007

Examples of correctly recognized handwritten digits

that the neural network had never seen before

Its very

good

Experimental 
evaluation of 
DBN with 
greedy layer-
wise pre-
training and 
fine-tuning 
via the wake-
sleep 
algorithm 
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Slide from Hinton, NIPS Tutorial 2007

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?

• Generative model based on RBM’s                   1.25%

• Support Vector Machine  (Decoste et. al.)    1.4%

• Backprop with 1000 hiddens (Platt)                 ~1.6%

• Backprop with 500 -->300 hiddens                  ~1.6%

• K-Nearest Neighbor                                        ~ 3.3%

• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible

because the neurons only need to send one kind of signal,

and the teacher can be another sensory input.

Experimental 
evaluation of 
DBN with 
greedy layer-
wise pre-
training and 
fine-tuning 
via the wake-
sleep 
algorithm 



Outline
• Motivation
• Deep Neural Networks (DNNs)

– Background: Decision functions
– Background: Neural Networks
– Three ideas for training a DNN
– Experiments: MNIST digit classification

• Deep Belief Networks (DBNs)
– Sigmoid Belief Network
– Contrastive Divergence learning
– Restricted Boltzman Machines (RBMs)
– RBMs as infinitely deep Sigmoid Belief Nets
– Learning DBNs

• Deep Boltzman Machines (DBMs)
– Boltzman Machines
– Learning Boltzman Machines
– Learning DBMs
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Deep Boltzman
Machines
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.
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where the aggregated posterior is simply the non-factorial
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n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
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to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
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versely, for the top-level RBM we double the number of
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Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden
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units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.
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where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:
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Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
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n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy
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(CD) (Hinton, 2002). It was further observed (Welling
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vergence to perform well, it is important to obtain exact
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is intractable when learning full Boltzmann machines.
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Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
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t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Delta updates to each of model parameters:

(Old) idea from Hinton & Sejnowski (1983): For each 
iteration of optimization, run a separate MCMC chain 
for each of the data and model expectations to 
approximate the parameter updates.
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a time that is exponential in the number of hidden units.
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quired to approach the stationary distribution, especially
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inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
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t=0 αt = ∞ and
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t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
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R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton
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states given the data to have a single mode, so simple and
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be adequate. Indeed, sacrificing some log-likelihood in or-
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with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
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∑
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∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
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N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.
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Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
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3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
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Mean-field approximation: Variational lower-bound of log-likelihood:

Fixed-point equations for variational params:

Learning Standard 
Boltzman Machines

DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by 

variational inference.  
• Step 2) Approximate the model distribution 

with a “persistent” Markov chain (from 
iteration to iteration)
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�Step 2) Approximate the model distribution…

Why not use variational inference for the model expectation as well?

Learning Standard 
Boltzman Machines

DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by 

variational inference.  
• Step 2) Approximate the model distribution 

with a “persistent” Markov chain (from 
iteration to iteration)

Difference of the two mean-field approximated expectations above 
would cause learning algorithm to maximize divergence between true 
and mean-field distributions. 

Persistent CD adds correlations between successive iterations, but not an issue.



Deep Boltzman
Machines

• DBNs are a 
hybrid 
directed/undi
rected 
graphical 
model

• DBMs are a 
purely 
undirected 
graphical 
model
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model



Learning Deep 
Boltzman Machines

Can we use the same 
techniques to train a DBM?
I. Pre-train a stack of RBMs in 

greedy layerwise fashion 
(requires some caution to 
avoid double counting)

II. Use those parameters to 
initialize two step mean-
field approach to learning 
full Boltzman machine (i.e. 
the full DBM)
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:
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where θ = {W1,W2} are the model parameters, repre-
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interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
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supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
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top-down would amount to double-counting the evidence
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inate the double-counting problem when top-down and
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lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model



Document Clustering 
and Retrieval

Clustering Results
• Goal: cluster related documents
• Figures show projection to 2 dimensions
• Color shows true categories
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DBMs

Figure from (Salakhutdinov and Hinton, 2009)

First compress all documents to 2 numbers using a type of PCA

Then use different colors for different document categories

              First compress all documents to 2 numbers.

Then use different colors for different document categories

PCA DBN



Deep Learning

Lots to explore:
– Other nonlinear functions
• Rectified Linear Units (ReLUs)

– Popular (classic) architectures:
• Convolutional Neural Networks (CNN)
• Long-term Short-term Memory (LSTM)

– Modern architectures
• Stacked SVMs with random projections
• Sum-product Networks
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