Deep Learning

Kayhan Batmanghelich

Slides: Matt Gormley

Why is everyone talking

Motivation ,
about Deep Learning?

* Because alot of money is invested init...
— DeepMind: Acquired by Google for $400
million
— DNNResearch: Three person startup

(including Geoff Hinton) acquired by Google
for unknown price tag

— Ersatz, MetaMind, Nervana, Skylab:
Deep Learning startups commanding millions

of VC dollars

* Because it made the front page of the
New York Times

G$$ gle
€

Ehe New Aork Times

Why is everyone talking

Motivation ,
about Deep Learning?

(ieos Deep learning:

/ — Has won numerous pattern recognition
(19805 competitions

— Does so with minimal feature
' 119905 engineering

ks““~w

L %2006

15 2016

A Recipe for

Background , ,
Machine Learning

1. Given training data:

{fL‘i, Y, 712\;1

Face Not a face

2. Choose each of these:
— Decision function

A Examples: Linear regression,
y — f@ (',L"L) Logistic regression, Neural Network
— Loss function

A~ Examples: Mean-squared error,
Z(y, yz) E R Cross Entropy

A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y)it 3

v Jifi=1 0" = argmein;(?(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (2137,) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

-1 VE(fo(xs), y;)

-n:VE(fo(xi), ;)

Outline

Motivation

Deep Neural Networks (DNNs)

— Background: Decision functions

— Background: Neural Networks

— Three ideas for training a DNN

— Experiments: MNIST digit classification
Deep Belief Networks (DBNSs)

— Sigmoid Belief Network

— Contrastive Divergence learning

— Restricted Boltzman Machines (RBMs)
— RBMs as infinitely deep Sigmoid Belief Nets
— Learning DBNs
Deep Boltzman Machines (DBMs)

— Boltzman Machines

— Learning Boltzman Machines

— Learning DBMs

Outline

Deep Neural Networks (DNNs)
— Background: Decision functions
— Background: Neural Networks
— Three ideas for training a DNN
— Experiments: MNIST digit classification

Decision
Functions

Output

Linear Regression

y = fo(x) =h(0 - x)

where h(a) = a

Decision
Functions

Output

Input °

Linear Regression

y = fo(x) =h(0 x)

0 where h(a) = a

Decision

FUnctions Linear Regression

y = fo(x) =h(0-x)

where h(a) = a
Output 0

N . [

Decision
Functions

Output

Linear Regression

y = fo(x) =h(0 - x)

where h(a) = a

Decision

FUnctions Logistic Regression

y = fo(x) =Nh(0)

1
where h(a) = T oxp(a)

Output

0
—————————————

Decision
Functions

Output

Neural Network

Multi-Class Output

Decision

Functions

Decision

Cnctions Deeper Networks

This lecture:

Deeper Networks

Decision

Functions

This lecture:

~
—
%
>
(4]
—
c
a
o
=2
T

Decision

Cunctions Deeper Networks

This lecture:....
Making the
neural
networks
deeper e

Decision Different Levels of
Functions Abstraction

Feature representation
* We don’t know

the “right” 3rd layer
llob' t '
levels of IR
abstraction
2nd layer

e So let the model

“Object parts”
figure it out! e

1st layer
llEdgeS”

Pixels

Example from Honglak Lee (NIPS 2010)

Decision Different Levels of
Functions Abstraction

. e Feature representation
Face Recognition:

— Deep Network 3rd layer
: “Objects”
can build up
increasingly
higher levels of 2nd layer

abstraction “Object parts”

— Lines, parts,

: 1st layer
regions

llEdgeS”

Pixels

Example from Honglak Lee (NIPS 2010)

Decision Different Levels of
Functions Abstraction

Feature representation

Output

3rd layer
“Objects”

Hidden Layer 3

Alc AQmINS
= L L 2nd layer

I CWEr , ,
A “Object parts”

Hidden Layer 2

1st layer
llEdgeS”

Hidden Layer 1

Pixels

Example from Honglak Lee (NIPS 2010)

-n:VE(fo(xi), ;)

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

26

Training Backpropagation

Backpropagation

is just ted
osionone ()= g(w) and @)= h(@)
hai le f —
chain rule from (N

Training Backpropagation

Case 1:
Logistic
Regression
Forward L ‘L Backward
dJ _y- (1—y")
logg+ (1 — y)log(1 — — =
@%(y")log(1 —g) R
B 1 dJ dJdg dq exp(a)
177 +exp(—a)) da dgda’ da (exp(a)+ 1)2
D
dJ dJ da da
a = Z (9'513j ~a g = Ly
1= f,{ do; da db;’ db;
dJ dJ da da
_ — 0,

dr; dadv; dv;

28

Training Backpropagation

[S&&cf"? Vi

What does this picture actually mean? J =35y —y9D)

[(E) Output (sigmoid))
1

Y= 14-exp(b)

f

[(D) Output (linear)
b=3""0B%
[(C) Hidden (sigmoid)

— 1 ;
cj = 1+exp(a;)’ Vj

f

[(B) Hidden (linear)
a; = S0 iz, Vi
[(A) Input]

Given z;, Vi

Output

Hidden Layer

29

Training Backpropagation
Case 2: Forward Backward
Neural

Network

J=y"logq+ (1 —y")log(l —q)

1
1T exp(—b)
D
b = Z ﬁij
=0

aJ _y (A-y)
dg ¢ q—1

dJ dJdy dy exp(b)

db dydb db (exp(b) + 1)
dJj dJdb db
dg; dbdg;’ dp;
dJ dJdb db
dz; dbdz;’ dz; =0

dJ dJdz dz; exp(ay)
da; dzjda;’ da; (exp(a;) + 1)
dJ dJ da;j da;
doy; dajdoy;’ dog

Zj

dJ o dJ daj dCLj
da:i - daj dﬂ?i7 dﬂfl

D
7=0 30

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

31

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
=
Ll
15 -
1.0 - T T T |
Shallow Net ldea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 5.

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

L 2.0
o
w
Ll
- :I
1.0 - | T T |
Shallow Net ldea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) s

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckinlocal optima

* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradient is progressively getting more dilute
* “Vanishing gradients”

34

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even a simple quadratic z = xy objective is
nonconvex:

35

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even a simple quadratic z = xy objective is
nonconvex:

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient
..........

of the nearest hill...

Problem A:
Nonconvexity

Training

Stochastic Gradient
Descent...

...climbs to the top
of the nearest hill...

...which might not ¥~
lead to the top of
the mountain

Problem B:

T
ramning Vanishing Gradients

The gradient for an edge >
at the base of the

network depends on the "«
gradients of many edges
above it

The chain rule multiplies s
many of these partial

derivatives together @ @ | “ @

Problem B:

fraining Vanishing Gradients
The gradient for an edge > @

at the base of the
network depends on the
gradients of many edges
above it

The chain rule multiplies
many of these partial
derivatives together

Problem B:

fraining Vanishing Gradients
The gradient for an edge >+ o1 @

at the base of the

network depends on the "«

gradients of many edges
above it

The chain rule multiplies
many of these partial

derivatives together lo .
AR 5
Dﬂ: =35 W™ o

ldea #2: Supervised

Traini
raining Pre-training

Idea #2: (Two Steps)

® Train each level of the model in a greedy way
® Then use our original idea

1. Supervised Pre-training
— Uselabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

46

S ldea #2: Supervised
: Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way

® Then use our original idea

Output

47

Training

ldea #2: Supervised
Pre-training

48

Training

ldea #2: Supervised
Pre-training

49

training

oY,

Rethed)
le»

~N

ldea #2: Supervised
Pre

dd
dd

o
=2

Training

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

L 2.0
o
w
Ll
- :I
1.0 - | T T |
Shallow Net ldea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) s

Training

% Error

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

2.0

1.5 -

1.0 -

Shallow Net

i
ldea #1 |dea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) -

ldea #3: Unsupervised

Traini
raining Pre-training

Idea #3: (Two Steps)

® Use our original idea, but pick a better starting point
® Train each level of the model in a greedy way

1. Unsupervised Pre-training
— Use unlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

53

I Ne solution:
Unsupervised pre-
training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

I Ne solution:
Unsupervised pre-
training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

This topology defines an
Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(x)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x, as both input and output.

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

Slide adapted from Raman Arora

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2.
Then fix its parameters.

— Train hidden layer n.
Then fix its parameters.

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. b
Then fix its parameters.

"\

Ay =
-““V~ ——

N

X

en Layer

— Train hidden layer n. e —
Then fix its parameters. Z—"

The solution:
Unsupervised pre-training\

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. - 5
Then fix its parameters. X e

- oo Hidden Layer @ ay @

— Train hidden layer n. X

Then fix its parameters. m Q \(

Unsupervised pre-
training
* Work bottom-up

Supervised fine-tuning

The solution:
Unsupervised pre-training

Hidden Layer

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2. ieniayer
Then fix its parameters.

Train hidden layer n. sidentayer
Then fix its parameters.

Backprop and update all \

parameters

Deep Network Training

Idea #1:

e

Supervised fine-tuning only

Idea #2:

e

Supervised layer-wise pre-training

2. Supervised fine-tuning

Idea #3:

1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

61

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

L 2.0
o
w
Ll
- :I
1.0 - | T T |
Shallow Net ldea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) ¢

Training

% Error

Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

2.0

1.5 -

1.0 -

o

‘n N

Shallow Net

ldea #1 |dea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) ¢

s [ayer-wise pre-training

Training

always necessary?

In 2010, arecord on a hand-writing
recognition task was set by standard supervised
backpropagation (our Idea #1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)

Deep Learning

* Goal: learn features at different levels of
abstraction

* Training can be tricky due to...
— Nonconvexity
— Vanishing gradients

* Unsupervised layer-wise pre-training can
help with both!

Outline

* Deep Belief Networks (DBNs)
— Sigmoid Belief Network
— Contrastive Divergence learning
— Restricted Boltzman Machines (RBMs)
— RBMs as infinitely deep Sigmoid Belief Nets
— Learning DBNs

Question:

How does this relate to
Graphical Models?

The first “Deep Learning” papers in 2006 were
innovations in training a particular flavor of
Belief Network.

Those models happen to also be neural nets.

67

DBNSs MNIST Digit Generation

* This section: Suppose you
want to build a

. C 0 ¢ 0o 00 0 0 9
generative model R A
capable of explaining 22 7 % 32 9272 .2
handwritten digits 273 2133393

e Goal: AU 4 ¢ 74 4 & 4 4 4 |
S 8§ 56 55 5 575
— To have a model p(x) | 3 _
from which we can ﬁ ? _‘; ; _‘; _‘;: _"; f; i
sample digits that look |
realistic 7 & 68 ® 8 % ¥ § & €
* 9 2 5 9 7T ¢ 9 9 1%

— Learn unsupervised
hidden representation of
an image

Figure from (Hinton et al., 2006)

DBNs Sigmoid Belief Networks

* Directed graphical model of
binary variables in fully
connected layers

* Only bottom layer is observed

* Specific parameterization of
the conditional probabilities:

p(x;|parents(x;)) =
1

1+ exp(—)_wij;)

Unknown Params

Figure from Marcus Frean, MLSS Tutorial 2010

I Note:thisisaGM !
' diagramnota NN!

A bit of (relevant) digression:
Contrastive Divergence

Contrastive Divergence

DBNs ..
Training

Contrastive Divergence is a general tool for learning a generative distribution,
where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model:

max:{(D; w)

" g (D)

73

Contrastive Divergence
Training

DBNs

Fill in

Contrastive Divergence

DBNs S
Training

Contrastive Divergence is a general tool for learning a generative distribution,
where the derivative of the log partition function is intractable to compute.

Max likelihood principle to train the model:
max {(D; w)
w

Computéd from samples! Needssampling!

* Ahurdle: many MCMC cycles required to compute the second term.
* Hinton et al. assert that only a few MCMC cycles would be needed to
calculate an approximate gradient.

75

Contrastive Divergence
Training

DBNs

P*(v,h)
N
P*(v,h)] 0 “
P(v) 8 log P*(v, h)

= ZM - j (’V,h}/,(.

av. overpostenorl
Slide from Marcus Frean, MLSS Tutorial 2010

76

Contrastive Divergence

DBNs T
Training

Another view:

o “
—TY—P* (v, h)
= —S‘S‘P* (v, h) o logP*(v h)

—YYPVh logP*(v h)

%4, -

average over joint!

Slide from Marcus Frean, MLSS Tutorial 2010

Contrastive Divergence
DBNs

Training
Another view:

gradient as a whole
3% log L

—ZZPh]V logP* Zth logP*()

< VE’D h

i;?a av. ove?;:osteflor - av. o;err joint

Another way to write it:
92 1og P*(x) — 2 Jog P*(x)
dw 08 w 08
x~P(x)
clamped / wake pha unclamped / sleep / free phase

177 conditioned hypotheses 11l random fantasies

Slide from Marcus Frean, MLSS Tutorial 2010

Back to Sigmoid BN

Contrastive Divergence

DBNs S
Training

For a belief net the joint is automatically normalised: Z i |s a constant 1

@ 2nd term is zero! < ﬂ ;Z ap‘)

Olog L ~ (z ,
R i

@ for the weight w;; from j into i, the gradient

@ stochastic gradient ascent:

Awij X \(ZE@ — pz)llfjj
A & k the ”d;Itra rule”
e

A

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

get samples from the posterior

M step: apply the learning rule that makes them more likely

Slide from Marcus Frean, MLSS Tutorial 2010

DBNs Sigmoid Belief Networks

* In practice, applying CD to a
Deep Sigmoid Belief Nets fails

* Sampling from the posterior of
many (deep) hidden layers
doesn’t approach the
equilibrium distribution quickly
enough

* Take home summary: Sigmoid
BN are easy to sample from as
a generative model, but hard
to learn

81

Figure from Marcus Frean, MLSS Tutorial 2010

How about undirected models?

DBNs Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

Yij(@i, x5) =
GXp(.CEi j)

(In English: higher value of parameter
W; leads to higher correlation between
X and X, on value 1)

Restricted Boltzman

DBNs .
Machines

@ Assume visible units are one layer, and hidden units are another.

@ Throw out all the connections within each layer.

hidden

=)

Ohjlhklv

@ the posterior P(h | v) factors
c.f. in a belief net, the prior P(h) factors

Slide from Marcus Frean, MLSS Tutorial 2010

84

Since none of the units within a fayer are interconnette
sampling by updating the whole layer at a time.

sods (20 0
b l \4., \&",;

i OO0

& T firve 8

- t=1 t=N
. . ' L~ r m
(with time running from left — right)

8
Slide from Marcus Frean, MLSS Tutorial 2010 ’

Restricted Boltzman
Machines

DBNs

learning in an RBM

Awgj <xixj>ve1>, h~P(hlv) <xi$j>x~P(x)
Repeat for all data: "[res prase]

@ start with a training vector on the visible units Hebbian learning anti-Hebbian

@ then alternate between updating all the hidden units in parallel and
updating all the visible units in parallel

Aw@'j =N [<Uz' hj>0 - <U’i hj>oo]

restricted connectivity is trick #1:

it saves waiting for equilibrium in the clamped phase.

86
Slide from Marcus Frean, MLSS Tutorial 2010

Restricted Boltzman

DBNs .
Machines

trick # 2: curtail the Markov chain during learning

Repeat for all data:
@ start with a training vector on the visible units
@ update all the hidden units in parallel
© update all the visible units in parallel to get a “reconstruction”
@ update the hidden units again

Aw;; = 1 [(v hj>0 — (v hj>1]

This is not following the correct gradient, but works well in practice. Geoff

Hinton calls it learning by “contrastive divergence”.
: : 87
Slide from Marcus Frean, MLSS Tutorial 2010

Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks
to generate: and so on...

DBNs

visible layer " v \\!’ Y&
CCQ@OD .

/s

203
X3
<

=

sampling from this is the same as sampling ~ W—y
from the network on the right.

/™
b

S
0%

v

O

VK
/X<
o

S
&
=G

3
./
o

visible layer

88
Slide from Marcus Frean, MLSS Tutorial 2010

Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks

DBNs

and so on...

:91e49uU3b 0]

~//
0“

<
.A‘

v

=
57 %
X)

.,
MRBM to generate:
visible layer) t visible layer visible layer

@ So when we train an RBM, we're really training an co” deep sigmoid
belief net!
@ It’s just that the weights of all layers are tied.

S

75\
; R\
/’é’:\'
S
2/
~‘\’.

%

89
Slide from Marcus Frean, MLSS Tutorial 2010

Let’s apply it on MNIST

Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNSs

Figure from (Hinton & Salakhutinov, 2006)

DBNs

Unsupervised Learning

of DBNSs

Setting A: DBN Autoencoder

greedy layerwise fashion

Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

Fine-tune the parameters
using backpropagation

Figure from (Hinton & Salakhutinov, 2006)

. Pre-train a stack of RBMs in

..

Pretraining

95

Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

1. Unroll the RBMs to create

DBNs

an autoencoder (i.e. W
bot.tom-up and jcop-down R
weights are untied) e

lll. Fine-tune the parameters
using backpropagation

Unrolling

Figure from (Hinton & Salakhutinov, 2006)

Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters |
using backpropagation

DBNs

Fine-tuning

Figure from (Hinton & Salakhutinov, 2006)

97

Supervised Learning

DBNSs
of DBNs

Setting B: DBN classifier

l. Pre-train a stack of RBMs
in greedy layerwise
fashion (unsupervised)

ll. Fine-tune the parameters
using backpropagation by
minimizing classification
error on the training data

Figure from (Hinton & Salakhutinov, 2006)

real e
data

30-D 4
deep auto
30-D logistic
PCA

30-D

PCA

* Comparison of deep autoencoder, logistic PCA, and PCA
* Each method projects the real data down to a vector of
30 real numbers

* Thenreconstructs the data from the low-dimensional
projection

DBNSs MNIST Digit Recognition

Examples of correctly recognized handwritten digits

that the neural network had never seen before
Experimental

evaluation of o C) dj 1 L (/jf & Iu 2,

DBN with
greedy layer-

wise pre- 8*&;7&,’32}13)’?

training and
fine-tuning

oo S ¢ 794947056 >9
le L 702\ 7 T332

algorithm
Its very

D8 YT I LG T oo

Slide from Hinton, NIPS Tutorial 2007

DBNSs MNIST Digit Recognition

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?
Experimental

evalua’sion of » Generative model based on RBM’s 1.25%
gfeIZc\lA)llrlc:yer- Support Vector Machine (Decoste et. al.) 1.4%
e e « Backprop with 1000 hiddens (Platt) ~1.6%
training and Backprop with 500 -->300 hiddens ~1.6%
fine-tuning « K-Nearest Neighbor ~3.3%
via the wake- e« See Le Cun et. al. 1998 for more results

sleep

algorithm

* Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

102
Slide from Hinton, NIPS Tutorial 2007

Outline

* Deep Boltzman Machines (DBMs)
— Boltzman Machines
— Learning Boltzman Machines
— Learning DBMs

Deep Boltzman

DBMSs .
Machines

* DBNsarea
hybrid Deep Belief Deep Boltzmann

directed/undi Network Machine
rected

graphical
model
 DBMs are a
purely
undirected
graphical
model

Deep Boltzman

DBMs)
Machines

Deep Boltzmann
Machine

Can we use the same
techniques to train a DBM?

Learning Standard

DBMs)
Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

thij (w4, 75) =
GXp(SEiWZ‘j$]’)

(In English: higher value of
parameter W; leads to higher
correlation between X; and X; on
value 1)

DBMs
\J
v
PN = pLek]

Visibleunits: v ¢ {0,1}P
Hiddenunits: ~ h € {0,1}¥
Likelihood:

I S NS

E(v,h;0) = 2V Lv 2h Jh — v er}

HV 9‘{ L?M %Zexp E(v,h;0)),
Z(0) =) > exp(—E(v,h;0)),
v h

@ - -
’)/

Learning Standard
Boltzman Machines, . 5ty

g

O

o
()\&

¢ (%) Al

legdr= XWyr;

Learning Standard
Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain Q
for each of the data and model expectations to

approximate the parameter updates.

Delta updates to each (;f/wodel parame\egs:

DBMs

AW = « (EMJ Ep model [Vh—r]))
AL = (EPdata [VVT] Podel [VV]) y
A = a (Ep,,.. hh'] - Ep, .., [hhTD ;

Full conditionals for Gibbs sampler:
p(hj =1v,h_j) =0 (Y Wiv; + Z Timhj),

=1 ml\y

p(v; = 1lh,v_;) = Zth -+ Z Lkvj
k=1\1

Learning Standard
Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each <‘\ —
B

DBMs

iteration of optimization, run a separate MCMC chain ut it doesn’t work
for each of the data and model expectations to very well!
approximate the parameter updates.

The MCMC chains

Delta updates to each of model parameters: take too long to mix

) . T _ ially for th
AW =« <<Vh >v€D,h~p(h|V) ~(vh >Vvh“’p(h"’)) daetzpdeiilfril)),u;;n.e
AL =« (<VVT>v€D,h~p(h|v) - <VVT>v,h~p(h,v>> \ |

AJ = a <<hhT>veD,h~p(h|V) B <hhT,>,V>h~P<h’V>>

Full conditionals for Gibbs sampler:
p(hj =1v,h_j) =0 (Y Wiv; + Z Timhj),

=1 ml\y

p(v; = 1lh,v_;) = Zth -+ Z szvj
k=1\1

Learning Standard
Boltzman Machines

O

DBMs

(New) idea from Salakhutinov & Hinton (2009):
« Step 1) Approximate the data distribution by

variational inference.
Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)
Delta updates to each of model parameters:

¥
AW = « (<VhT>veD,h~p(h|V) B <VhT>V,;th(h’V))
- - T
AL =a (<VV >veD,h~p(hIV) B <VV >V’th(h’V)>

AJ =« (<hhT>veD,h~p(h|V) B <hhT>V’th(h’v))

DBMs

Learning Standard

Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):
« Step 1) Approximate the data distribution by
variational inference.

Approximate the model distribution
with a “persistent” Markov chain (from
iteration to iteration)

Delta updates to each of model parameters:

AW = q (<VhT>v€D,h~p(h|V) ; <VhT>V’hNP<h’V))

/. — — \

Step 1) Approximate the data distribution...

O

Mean-field approximation: Variational lower-bound of log-likelihood:
P
qh; p) = [[;=; q(hs) p(vi0) >} q(blvip)np(v,h;0) + H(q)
<aF o — h
q(hi — 1) = U Fixed-point equations for variational params:
-

L < O'(Z W@-jvz- —+ Z ij,um)

m\j

DBMs

Learning Standard

Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):
« Step 1) Approximate the data distribution by
variational inference.
Approximate the model distribution
with a “persistent” Markov chain (from
iteration to iteration)

Delta updates to each of model parameters:

¥ e (W)oemmmn - O]

/ . — \

—

Step 2) Approximate the model distribution...

O

Why not use variational inference for the model expectation as well?

Difference of the two mean-field approximated expectations above
would cause learning algorithm to maximize divergence between true

and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

Deep Boltzman

DBMSs .
Machines

* DBNsarea
hybrid Deep Belief Deep Boltzmann

directed/undi Network Machine
rected

graphical
model
 DBMs are a
purely
undirected
graphical
model

Learning Deep

DBMs)
Boltzman Machines

Can we use the same

techniques to train a DBM? Deep Boltzmann
Machine

l. Pre-train a stack of RBMs in
reedy layerwise fashion
requires some caution to

avoid double counting)

II. Use those parameters to
initialize two step mean-
field approach to learning
full Boltzman machine (i.e.
the full DBM)

DBMs

Clustering Results

Document Clustering
and Retrieval

e Goal: cluster related documents
* Figures show projection to 2 dimensions

* Color shows true categories

PCA

Figure from (Salakhutdinov and Hinton, 2009)

DBN

European Community
Interbank Markets Monetary/Economic

Energy Markets .
Disasters and
Accidents

Leading Ecnomic SOt YR * ﬁ Legal/Judicial
Indicators . y N A 'X'\ o
R TR S
b PO
‘ S Government
Accounts/ . i Borrowings

Earnings

118

Deep Learning

Lots to explore:

— Other nonlinear functions
* Rectified Linear Units (ReLUs)
— Popular (classic) architectures:
* Convolutional Neural Networks (CNN)
* Long-term Short-term Memory (LSTM)
— Modern architectures

* Stacked SVMs with random projections
* Sum-product Networks

