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Review



Review: Directed Graphical Model
• Represent distribution of the form

• Factorizes in terms of local conditional probabilities

• Each node has to maintain

• Each variable is Conditional Independent of its non-descendants given its parents

• Such an ordering is a “topological” ordering (i.e., parents have lower numbers than 
their children)

p(Xi|⇡(Xi))

p(X1, · · · , Xn) =
nY

i=1

p(Xi|⇡(Xi))

Parents of !"

Parents of !"the nodes before !" that are not 
its parents !"



Review: Directed Graphical Model
For discrete variables, each node stores a conditional probability table (CPT)



Review: independence properties of DAGs

• Defn: let Il(G) be the set of local independence properties encoded by DAG 
G, namely:

• Defn: A DAG G is an I-map (independence-map) of P if Il(G)Í I(P)
• A fully connected DAG G is an I-map for any distribution, since Il(G)=ÆÍ 

I(P) for any P.
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Review: I-equivalence
• Which graphs satisfy                                           ? I(G) = {x1 ?? x2|x3}

• Defn : The skeleton of a Bayesian network graph G over V is an undirected graph 
over V that contains an edge {X, Y} for every edge (X, Y) in G.



Why Undirected GM?



DGM is not always a good choice…

?air or land ?



DGM is not always a good choice…

What if we cannot observe h ?



Undirected Graphical Models (UGM)
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• As in DGM, the nodes in the graph represent the 
variables 

• Edges represent probabilistic interaction between 
neighboring variables 

• Parametrization? 
• In DGM we used CPD (conditional probabilities) to 

represent distribution of a node given others 
• For undirected graphs, we use a more symmetric

parameterization that captures the affinities 
between related variables.

• Differences: 
• Pairwise (non-causal) relationships
• No explicit way to generate samples



What is UGM?



• Pairwise (non-causal) relationships
• Can write down model, and score specific configurations of the graph, 

but no explicit way to generate samples
• Contingency constrains on node configurations

X1 X4

X2

X3

X5

Undirected graphical models (UGM)



Social networks
Did you like HW0?
Links represent correlation between members.
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A Canonical Example: understanding complex 
scene …
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Protein interaction networks
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Information retrieval 

topic

text

image
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Undirected graphical models (UGM)
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Defn (also called Markov Network): For a set of variables                                        a Markov 
network is defined as a product of potentials on subsets of the variables  

X = {x1, · · · , xn}

This is called potential ≥ 0
(this does not have to be 
probability)

Maximal clique

Def: A maximal clique is 
a clique that cannot be 
extended by including one 
more adjacent vertex, 
meaning it is not a subset of a 
larger clique.

Normalizer to ensure it is 
a # is a probability



Independence



Structure: DAG

• Meaning: a node is conditionally 
independent of every other node in the 
network outside its Markov blanket

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent
Child

Remember the Markov Blanket for BN
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About Conditional Independence
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Global Markov Property:                                     if and only if C separates A from B (there is no path connecting 
them) 

Markov Blanket (local property) is the set of nodes that renders a node ! conditionally independent of all 
the other nodes in the graph

All nodes in 
the graph

Markov Blanket



Example of Dependencies
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Pairwise:

Local:

Global:



Example of Dependencies
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Pairwise:

Local:

Global:

Global ⟹ Local ⟹ Pairwise  

For proof: See page 119 of the book by Koller and Friedman



UGM and DGM
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Probabilistic Models

Graphical Models

Directed Models Undirected ModelsChordal

Triangulation: UGM ⟹ DGM
Moralization: DGM ⟹ UGM



Not all UGM can be represented as DGM
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X X
In this graph, B and D are 
marginally independent



Not all DGM can be represented as UGM
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What is this “Clique”? 



Undirected graphical models (UGM)
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Defn (also called Markov Network): For a set of variables                                        a Markov 
network is defined as a product of potentials on subsets of the variables  

X = {x1, · · · , xn}

This is called potential ≥ 0
(this does not have to be 
probability)

Maximal clique

Def: A maximal clique is 
a clique that cannot be 
extended by including one 
more adjacent vertex, 
meaning it is not a subset of a 
larger clique.

Normalizer to ensure it is 
a # is a probability



Examples

28



Interpretation of Clique Potentials

• The model implies . This independence statement implies (by definition) that the joint 
must factorize as:

YX Z

29

X?? Z|Y

p(x, y, x) = p(y)p(x|y)p(z|y)

…but also we can write it

…but also … p(x|y)p(z, y)
p(x, y)p(z|y)

f1(x, y)

Z1

f2(y, z)

Z2

…but also …



Interpretation of Clique Potentials

• The model implies . This independence statement implies (by definition) that the joint 

must factorize as:

YX Z

30

X?? Z|Y

p(x, y, x) = p(y)p(x|y)p(z|y)

…but also we can write it

…but also … p(x|y)p(z, y)
p(x, y)p(z|y)

f1(x, y)

Z1

f2(y, z)

Z2

…but also …

Take-home message about potentials:

• Those are not necessarily marginals or conditionals.

• The positive clique potentials can only be thought of as general 

"compatibility", "goodness" or "happiness" functions over their variables, 

but not as probability distributions.



• For discrete nodes, we can represent P(X1:4) as two 3D tables instead of one 
4D table

Example UGM – using max cliques 
A

C

D B

)()(),,,(' 2341244321
1 xx ccZ

xxxxP yy ´=

å ´=
4321

234124
xxxx

ccZ
,,,

)()( xx yy

A,B,D B,C,D

)( 124xcy )( 234xcy
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• We can represent P(X1:4) as 5 2D tables instead of one 4D table

• Pair MRFs, a popular and simple special case

• Are two graphs equivalent (            and           )? 

Example UGM – using subcliques 
A

C

D B

)()()()()(

)(),,,("

34342424232314141212

4321

1

1

xxxxx

x

yyyyy

y

Z

Z
xxxxP

ij
ijij

=

= Õ

å Õ=
4321 xxxx ij

ijijZ
,,,

)(xy

A,B

A,D

B,D C,D

B,C
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Example UGM – canonical representation 
A

C

D B

)()()()(   
)()()()()(   

)()(

),,,(  

44332211

34342424232314141212

234124

4321

1

xxxx

Z

xxxxP

cc

yyyy
yyyyy

yy

´
´

´=

xxxxx

xx

å
´
´

´
=

4321
44332211

34342424232314141212

234124

xxxx
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xxxx
Z

,,, )()()()(   
)()()()()(   

)()(      

yyyy
yyyyy

yy
xxxxx

xx

l Most general, subsume P' and P" as special cases
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Hammersley-Clifford Theorem

• If arbitrary potentials are utilized in the following product formula for 
probabilities, 

then the family of probability distributions obtained is exactly that set which respects the 
qualitative specification (the conditional independence relations) described earlier 

• Thm : Let P be a positive distribution over V, and H a Markov network graph over V. If H
is an I-map for P, then P is a Gibbs distribution over H.

Õ
Î

=
Cc

ccn Z
xxP )(),,( xy1

1 !

å Õ
Î

=
nxx Cc

ccZ
,,

)(
!1

xy
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Factor Graphs



Factor Graph

• A factor graph is a graphical model representation that unifies directed and 
undirected models 
• It is an undirected bipartite graph with two kinds of nodes. 

• Round nodes represent variables, 
• Square nodes represent factors 

and there is an edge from each variable to every factor that mentions it. 
• Represents the distribution more uniquely than a graphical model

Random 
variables

Factors

x1
x2

x3

x4 f(x2, x4)

f(x1, x3)

f(x1, x2)



Factor Graph for UGM



Factor Graph for DGM

One factor per CPD (conditional distribution) and connect the factor to all the 
variables that use the CPD



Practical Examples



Exponential Form
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Remember the Gibbs distribution:

p(x1, · · · , xn) =
1

Z

CY

c=1

exp (��c(Xc))

p(x1, · · · , xn) =
1

Z

CY

c=1

 c(Xc) So-called Potentials > 0 

Energy of the clique, can be 
positive/negative

H(x1, · · · , xn) =
X

c

�c(Xc)
Free Energy of the system (log of prob):

A powerful parametrization (log-linear model):

H(x1, · · · , xn; ✓) =
X

c

fc(Xc)
T
✓c

Feature functionParam



Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for  !" ∈ {−1,+1} or !" ∈ {0,1}) is called a 
Boltzmann machine

1

3

4 2
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Hence the overall energy function has a quadratic form.

p(x1, x2, x3, x4; ✓;↵) =
1

Z(✓,↵)
exp

2

4
X

ij

✓ijxixj +
X

i

↵ixi

3

5

H(x;⇥, µ) = (x� µ)T⇥(x� µ)



Ising models
• Nodes are arranged in a regular topology (often a regular packing grid) and 

connected only to their geometric neighbors.

• Same as sparse Boltzmann machine, where qij¹0 iff i,j are neighbors.
• e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.

• Potts model: multi-state Ising model.

þ
ý
ü

î
í
ì

+= åå
Î i

ii
Nji

jiij XXX
Z

Xp
i

0
,

exp1)( qq

42
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hidden units (h)

visible units (x)

Restricted Boltzmann Machines (RBM)
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p(x, h; ✓) = exp

0

@
X

i

✓i�i(x) +
X

j

✓j�j(hj) +
X

i,j

✓i,j(xi, hj)�A(✓)

1

A

• Observed can pixels, signal in speech, 
word in a document

• Unobserved has “a notion” of summary 
of data

• One can use it as building block for more 
complicated models 



)|(~ xhph

)|(~ hxpx

Properties of RBM
• Factors are marginally dependent.

• Factors are conditionally independent 
given observations on the visible nodes. 

• Iterative Gibbs sampling to generate 
pairs of (x,h).

• Learning with contrastive divergence 
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p(h1, · · · , hM |x) =
Y

m

p(hm|x)



• For example: part of speech labeling
• We are interested in Discriminative (not joint):

Conditional Random Fields

þ
ý
ü

î
í
ì= å
c

ccc yxf
xZ

xyp ),(exp
),(

1)|( q
qq

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Y1 Y2 Y5…

X1 … Xn © Eric Xing @ CMU, 2005-2015
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Summary
• Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”, 

“synergism”, etc. between entities
• Local and global independence properties identifiable via graph separation criteria
• Defined on clique potentials

• Can be used to define either joint or conditional distributions
• Generally intractable to compute likelihood due to presence of “partition 

function”
• Therefore not only inference, but also likelihood-based learning is difficult in general

• Important special cases:
• Ising models
• RBM
• CRF
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Extra slides



P-maps

• Defn: A DAG G is a perfect map (P-map) for a distribution P if 
I(P)=I(G).
• Thm: not every distribution has a perfect map as DAG.
• Pf by counterexample. Suppose we have a model where

A^C | {B,D}, and B^D | {A,C}. 
This cannot be represented by any Bayes net.

• e.g., BN1 wrongly says B^D | A,  BN2 wrongly says B^D.
A

C

D B

C A

D B

BN1 BN2

A

C

D B

MRF© Eric Xing @ CMU, 2005-2015 56



P-maps

• Defn: A DAG G is a perfect map (P-map) for a distribution P if I(P)=I(G).
• Thm: not every distribution has a perfect map as DAG.

• Pf by counterexample. Suppose we have a model where
A^C | {B,D}, and B^D | {A,C}. 
This cannot be represented by any Bayes net.

• e.g., BN1 wrongly says B^D | A,  BN2 wrongly says B^D.

• The fact that G is a minimal I-map for P is far from a guarantee that G captures the 
independence structure in P

• The P-map of a distribution is unique up to I-equivalence between networks. That is, 
a distribution P can have many P-maps, but all of them are I-equivalent.
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Representation

• Defn: an undirected graphical model represents a distribution P(X1 ,…,Xn) 
defined by an undirected graph H, and a set of positive potential functions
yc associated with the cliques of H, s.t.

where Z is known as the partition function:

• Also known as Markov Random Fields, Markov networks …
• The potential function can be understood as an contingency function of its 

arguments assigning "pre-probabilistic" score of their joint configuration.   

Õ
Î

=
Cc

ccn Z
xxP )(),,( xy1

1 !

å Õ
Î

=
nxx Cc

ccZ
,,

)(
!1

xy
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I. Quantitative Specification: Cliques

• For G={V,E}, a complete subgraph (clique) is a subgraph G'={V'ÍV,E'ÍE} 
such that nodes in V' are fully interconnected
• A (maximal) clique is a complete subgraph s.t. any superset V"ÉV' is not 

complete.
• A sub-clique is a not-necessarily-maximal clique.

• Example: 
• max-cliques = {A,B,D}, {B,C,D}, 
• sub-cliques = {A,B}, {C,D}, …à all edges and singletons 

A

C

D B
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Gibbs Distribution and Clique Potential

• Defn: an undirected graphical model represents a distribution P(X1 ,…,Xn) 
defined by an undirected graph H, and a set of positive potential functions
yc associated with cliques of H, s.t.

where Z is known as the partition function:

• Also known as Markov Random Fields, Markov networks …
• The potential function can be understood as an contingency function of its 

arguments assigning "pre-probabilistic" score of their joint configuration.   

Õ
Î

=
Cc

ccn Z
xxP )(),,( xy1

1 !

å Õ
Î

=
nxx Cc

ccZ
,,

)(
!1

xy

(A Gibbs distribution)
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II: Independence properties:

• Now let us ask what kinds of distributions can be represented by 
undirected graphs (ignoring the details of the particular 
parameterization).
• Defn: the global Markov properties of a UG H are

Y

ZX
{ });(sep:))(I YZXYZXH H^=
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Global Markov Independencies

• Let H be an undirected graph:

• B separates A and C if every path from a node in A to a node in C passes through 
a node in B:
• A probability distribution satisfies the global Markov property if for any disjoint 
A, B, C, such that B separates A and C, A is independent of C given B:

);(sep BCAH

{ });(sep:)(I BCABCAH H^=
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Local Markov independencies 

• For each node Xi Î V, there is unique Markov blanket of Xi, denoted 
MBXi, which is the set of neighbors of Xi in the graph (those that 
share an edge with Xi)

• Defn: 
The local Markov independencies associated with H is:

Iℓ(H): {Xi ^ V – {Xi } – MBXi | MBXi : " i),

In other words, Xi is independent of the rest of the nodes in the graph given its immediate neighbors
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Soundness and completeness of global 
Markov property
• Defn: An UG H is an I-map for a distribution P if I(H) Í I(P), i.e., P

entails I(H).
• Defn: P is a Gibbs distribution over H if it can be represented as

• Thm (soundness): If P is a Gibbs distribution over H, then H is an I-
map of P.

• Thm (completeness): If ¬sepH(X; Z |Y), then X ^P Z |Y in some P that 
factorizes over H.

Õ
Î

=
Cc

ccn Z
xxP )(),,( xy1

1 !
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Other Markov properties

• For directed graphs, we defined I-maps in terms of local Markov 
properties, and derived global independence.
• For undirected graphs, we defined I-maps in terms of global Markov 

properties, and will now derive local independence.
• Defn: The pairwise Markov independencies associated with UG H = 

(V;E) are

• e.g., 

{ }EYXYXVYXHp Ï^= },{:},{\)(I

},,{ 43251 XXXXX ^

1 2 3 4 5

© Eric Xing @ CMU, 2005-2015 65



Relationship between local and global Markov 
properties
• Thm 5.5.5. If P |= Il(H) then P |= Ip(H). 

• Thm 5.5.6. If P = I(H) then P |= Il(H).

• Thm 5.5.7. If P > 0 and P |= Ip(H), then P |= I(H).

• Corollary (5.5.8): The following three statements are equivalent for a positive distribution P:

P |= Il(H)
P |= Ip(H)
P |= I(H)

• This equivalence relies on the positivity assumption.
• We can design a distribution locally
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Hammersley-Clifford Theorem

• If arbitrary potentials are utilized in the following product formula for probabilities, 

then the family of probability distributions obtained is exactly that set which respects the 
qualitative specification (the conditional independence relations) described earlier 

• Thm : Let P be a positive distribution over V, and H a Markov network graph over V. If H is an I-
map for P, then P is a Gibbs distribution over H.

Õ
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Perfect maps

• Defn: A Markov network H is a perfect map for P if for any X; Y;Z we 
have that

• Thm: not every distribution has a perfect map as UGM.
• Pf by counterexample. No undirected network can capture all and only the 

independencies encoded in a v-structure Xà Zß Y .

( )YZXPYZXH |);(sep ^=Û |
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E

R

B

A

C

E

R

B

A

C

Where is the graph structure come from?

The goal:
• Given set of independent samples (assignments of random variables), 

find the best (the most likely?) graphical model topology

ML Structural Learning for completely observed GMs 

(B,E,A,C,R)=(T,F,F,T,F)

(B,E,A,C,R)=(T,F,T,T,F)

……..     (B,E,A,C,R)=(F,T,T,T,F)

69

© Eric Xing @ CMU, 2005-2013



Information Theoretic Interpretation of ML
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From sum over data points to sum over count of variable states  
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Information Theoretic Interpretation of ML 
(con'd)
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Decomposable score and a function of the graph structure
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Structural Search

• How many graphs over n nodes?

• How many trees over n nodes?

• But it turns out that we can find exact solution of an optimal tree 
(under MLE)!
• Trick: in a tree each node has only one parent!
• Chow-liu algorithm

)(
22nO

)!(nO
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Chow-Liu tree learning algorithm

• Objection function:

• Chow-Liu:
• For each pair of variable xi and xj

• Compute empirical distribution:

• Compute mutual information:

• Define a graph with node x1,…, xn
• Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)

• Objection function:

• Chow-Liu:
Optimal tree BN
• Compute maximum weight spanning tree
• Direction in BN: pick any node as root, do breadth-first-search to define 

directions
• I-equivalence:
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Structure Learning for general graphs

• Theorem:
• The problem of learning a BN structure with at most d parents is 

NP-hard for any (fixed) d≥2

• Most structure learning approaches use heuristics
• Exploit score decomposition 
• Two heuristics that exploit decomposition in different ways

• Greedy search through space of node-orders

• Local search of graph structures
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Restricted Boltzmann Machines
The Harmonium  (Smolensky –’86)

hidden units

visible units
History:
Smolensky (’86), Proposed the architechture.
Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence. 
Marks & Movellan (’02), Diffusion Networks (Gaussian).
Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)
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