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Review



Review: Directed Graphical Model

* Represent distribution of the form
p(X1,-+, Xn) = | [ p(Xilmw (X))
* Factorizes in terms of local conditional probabilities

e Each node has to maintain p(Xz' ‘W(Xz))

e Each variable is Conditional Independent of its non-descendants given its parents

the nodes before X; that are not \AD? /
its parents X; -~
P ‘ Xz W(XZ)‘T('(X,J

* Such an ordering is a “topological” ordering (i.e., parents have lower numbers than
their children)

Parents of X;



Review: Directed Graphical Model

For discrete variables, each node stores a conditional probability table (CPT)
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Review: independence properties of DAGs

* Defn: let Z(6) be the set of local independence properties encoded by DAG

G, namely:
T,(G) = {X 1L Z|dsepg(X; Z|Y)}

* Defn: A DAG &is an I-map (independence-map) of Pif I(&)c I A

* A fully connected DAG &is an I-map for any distribution, since Z(&)=Jc
1A for any P



Review: I-equivalence

* Which graphs satisfy Z(G) = {x1 AL x5|x3}?

* Defn : The skeleton of a Bayesian network graph G over V'is an undirected graph
over V that contains an edge {X, Y} for every edge (X, Y) in G.



Why Undirected GM?



DGM is not always a good choice...

X1 = X7 = Xz = X9 = Xy

air or land ? .



DGM is not always a good choice...

What if we cannot observe h ?



Undirected Graphical Models (UGM)

As in DGM, the nodes in the graph represent the

variables X — Xy o Xy =— X5

Edges represent probabilistic interaction between I

neighboring variables Xe ° ﬁ.\',\-i o X10

Parametrization? I |
* In DGM we used CPD (conditional probabilities) to X111 — Xpo 0 Xy — X5
represent distribution of a node given others
* For undirected graphs, we use a more symmetric I I I |
parameterization that captures the affinities Nig— X — XNjg— XNjg — Xog
between related variables.

* Differences:
e Pairwise (non-causal) relationships
* No explicit way to generate samples



What is UGM?



Undirected graphical models (UGM)
X

* Pairwise (non-causal) relationships

* Can write down model, and score specific configurations of the graph,
but no explicit way to generate samples

* Contingency constrains on node configurations



Social networks

Did you like HWO?
Links represent correlation between members.
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A Canonical Example: understanding complex
scene ...
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Information retrieval

© Eric Xing @ CMU, 2005-2015
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Undirected graphical models (UGM)

Defn (also called Markov Network): For a set of variables X = {z1,---,Zn,} a Markov
network is defined as a product of potentials on subsets of the variables X, C X

p(CCl,-.. n ZH¢C )

N

Maximal clique

This is called potential = 0
(this does not have to be  pef: A maximal clique is

Normalizer to ensure it is probability) a clique that cannot be
a p is a probability extended by including one

more adjacent vertex,
meaning it is not a subset of a

larger clique.
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Independence



Remember the Markov Blanket for BN

Structure: DAG

e Meaning: a node is conditionally - -

independent of every other node in the
network outside its Markov blanket

Ancestor

Descendent

19



About Conditional Independence

Global Markov Property: X 4 1l Xpg |XC if and only if C separates A from B (there is no path connecting
them)

{1,2} L {6,7}|{3,4,5}

Markov Blanket (local property) is the set of nodes that renders a node t conditionally independent of all
the other nodes in the graph

t1LV— mb(t) — {t}mb(t) ~ Mb()=1{2,3,4,6,7}

\s_ _—/

All nodes in Markov Blanket
the graph 0



Example of Dependencies

Pairwise:1 | 7| rest

local: 1 1 rest|2,3

Global: 1,2 1 6,7|3,4,5 X, — X, X3 — X, — X;
| |
% = )
1 1 7|rest?, 1 L 20|rest?,1 1 2|rest? |
|
1L rest|?, 3 L rest|? X111 — X9 @ X1y — X5

1,2 1 15,20|?



Example of Dependencies

Pairwise:1 | 7| rest

local: 1 1 rest|2,3

Global: 1,2 1 6,7|3,4,5

Global = Local = Pairwise

~_ ~

])( 1‘) > 0 For proof: See page 119 of the book by Koller and Friedman
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UGM and DGM

Directed Models

Graphical Models

Probabilistic Models

Undirected Modelg

Triangulation: UGM = DGM
Moralization: DGM = UGM

23



Not all UGM can be represented as DGM

(A2 (A
(5 (8
CORNCY (o) (&) L ><.
SOERTY
(< (S
AL C|D,B ALl C|D,B AL C|D,B
B 1 D|A,C X B 1 D|A, C x

B 1 D|A,C
In this graph, B and D are
marginally independent



Not all DGM can be represented as UGM

Undirected model fails to capture the marginal independence (X L Y) that
holds in the directed model at the same time as —(X L Y|Z2)
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What is this “Clique™?



Undirected graphical models (UGM)

Defn (also called Markov Network): For a set of variables X = {z1,---,Zn,} a Markov
network is defined as a product of potentials on subsets of the variables X, C X

p(CCl,-.. n ZH¢C )

N

Maximal clique

This is called potential = 0
(this does not have to be  pef: A maximal clique is

Normalizer to ensure it is probability) a clique that cannot be
a p is a probability extended by including one

more adjacent vertex,
meaning it is not a subset of a

larger clique.
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Examples

(=2)
@.@ (1, T2)d(x2, 23)P(T3, Ta)P(T4,21) /20
)

(1, T2, x4)P(T2, 3, T4)P(T3, T5)P(T3, T6)/Zc



Interpretation of Clique Potentials

O—(—®

* The model implies X || Z’Y This independence statement implies (by definition) that the joint
must factorize as:

p(z,y, ) =

..but also we can write it%
..but also ... >
b1(z,y) ,

...but also ...

29



Interpretation of Clique Potentials

Take-home message about potentials:
* Those are not necessarily marginals or conditionals.
* The positive clique potentials can only be thought of as general

"compatibility", "goodness" or "happiness" functions over their variables,
but not as probability distributions.



Example UGM — using max cliques

e WV, (Xip4) W, (X534) |

1

P'(xy,xp,X3,X4) = E‘//C(X124)><%(X234)

/ = Zl//c,(X124)><l//C(X234)

X1,X2,X3,X4

* For dilglcrete nodes, we can represent P(X;.,) as two 3D tables instead of one
4D table

© Eric Xing @ CMU, 2005-2015 31



Example UGM — using subcliques

" 1
P (xy, x5, X3, X4) :El |W;’/(le)
i

Z = Z HWU (ij/') = l%z (X12 W14 (X1 W23 (X3 )W 24 (X4 W34 (X34)

X1,X2,X3,X4 1 Z

* We can represent P(X,.,) as 5 2D tables instead of one 4D table
* Pair MRFs, a popular and simple special case
* Are two graphs equivalent (Z(P’) and Z(P")?

© Eric Xing @ CMU, 2005-2015
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Example UGM — canonical representation

° P(X1,X,%3,X4)
1
G.G :EWC(X124)X‘//C(X234)
X W12 (X1 W1q (X1 W 23 (X3 )W 24 (X4 )W 34 (X34)

e X W1 (X)W (X)W 3 (X34 (xy)

W (X124) XY (Xp34)
Z= Z XW1a (X12 W14 (X1 W23 (X203 W24 (X24 )W 34 (X34)
T oy () wo (6 )5 (x5 )W 4 (34)

e Most general, subsume P'and P" as special cases

© Eric Xing @ CMU, 2005-2015
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Hammersley-Clitfford Theorem

* |f arbitrary potentials are utilized in the following product formula for

probabilities,
P(xla"'a HWc( )

ceC

Z= Z [v.x.)

.X, ceC

then the family of probability distributions obtained is exactly that set which respects the
qualitative specification (the conditional independence relations) described earlier

* Thm : Let P be a positive distribution over V, and H a Markov network graph over V. If H
is an I-map for P, then P is a Gibbs distribution over H.

© Eric Xing @ CMU, 2005-2015 34



Factor Graphs



Factor Graph

wlg? f(iEl,ZEQ)
X2

30 f(x17x3)
140~ XEf(@,CM)

Random Factors
variables

* A factor graph is a graphical model representation that unifies directed and
undirected models

* It is an undirected bipartite graph with two kinds of nodes.

* Round nodes represent variables,
* Square nodes represent factors

and there is an edge from each variable to every factor that mentions it.
* Represents the distribution more uniquely than a graphical model



Factor Graph for UGM

bo




Factor Graph for DGM

& @

Q p(xs|zy, x2)
() (@) &

One factor per CPD (conditional distribution) and connect the factor to all the
variables that use the CPD




Practical Examples



Exponential Form

Remember the Gibbs distribution: | C = -
. | -
p(ﬂfl, « e ,an) — E H: wc(')(c) | So-called Potentials >0
C c=1==-=-=. /
1 g -
. o e — - I Energy of the clique, can be
p(xl’ ? Cl?n) Z H CXp (_I\¢C(XC))I positive/negative
C:]_ ....... -

Free Energy of the system (log of prob):

H(xh T 73371) — ZgbC(‘XC)

A powerful parametrization (log-linear model): C
- o .
H(chau' 73371;;_9_) E lfC(X) 9
Param . Feature function 0



Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x; € {—1,+1} or x; € {0,1}) is called a
Boltzmann machine e

p(CEl,CCQ,CUg,ZCLL;H;CY) — Z(Q Oé) eXPp ZHZJ.CCZCU] —+ Zaixi
’ ij i

Hence the overall energy function has a quadratic form.

H(x;0,p) = (x — p)" O(x — p)



Ising models

* Nodes are arranged in a regular topology (often a regular packing grid) and
connected only to their geometric neighbors.

1
p(X)=— exp{ D2 O0XX;+2, QiOXi}

i,jeN,

* Same as sparse Boltzmann machine, where 6,70 iff ;,J are neighbors.
* e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.

* Potts model: multi-state Ising model.

© Eric Xing @ CMU, 2005-2015
Vilp)



* Observed can pixels, signal in speech,

Restricted Boltzmann Machines (RBM)

word in a document

hidden units (h)
Unobserved has “a notion” of summary
of data

* One can use it as building block for more ‘
complicated models

visible units (x)

p(z, h;0) = exp (Z 0ipi(x) + Z 0;pi(h;) + Z 0:,5(Tiy hj) — A(9)>

43



Properties of RBM

* Factors are marginally dependent.

* Factors are conditionaIIK independent
given observations on the visible nodes.

p(ha,-  halx) = | [ p(hin[x)

* |terative Gibbs sampling to generate
pairs of (x,h).

* Learning with contrastive divergence

© Eric Xing @ CMU, 2005-2015
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Conditional Random Fields

* For example: part of speech labeling
 We are interested in Discriminative (not joint):
i

%)

%)

Py 1N =5 eXp{ZC: 0.1 (x, yc)}
™)

6

X X, © Eric Xing @ CMU, 2005-2015




Summary

)« )« )

* Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”,
“synergism”, etc. between entities
* Local and global independence properties identifiable via graph separation criteria
* Defined on clique potentials

* Can be used to define either joint or conditional distributions

* Generally intractable to compute likelihood due to presence of “partition
function”

* Therefore not only inference, but also likelihood-based learning is difficult in general

* Important special cases:
* Ising models
 RBM
* CRF



Extra slides



P-maps

* Defn: A DAG Gis a perfect map (P-map) for a distribution A if
[A=16).

 Thm: not every distribution has a perfect map as DAG.
* Pf by counterexample. Suppose we have a model where

ALC|{B D}, and B1D | {AC.

This cannot be represented by any Bayes net.




P-maps

* Defn: A DAG Gis a perfect map (P-map) for a distribution Pif Z[A=1{6).

* Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where

ALC|{B D}, and B1LD | {AC.

This cannot be represented by any Bayes net.
* e.g., BN1 wrongly says B1.D | A, BN2 wrongly says BLD.

* The fact that G is a minimal I-map for P is far from a guarantee that G captures the
independence structure in P

* The P-map of a distribution is unique up to l-equivalence between networks. That is,
a distribution P can have many P-maps, but all of them are I-equivalent.



Representation

* Defn: an undirected graphical model represents a distribution P(X,,...,X,)
defined by an undirected graph H, and a set of positive potential functions
y. associated with the cliques of H, s.t.

P(xy,...,x,) == ch(x )

where Z is known as the partition functlon ceC

Z= Z [v.(x.)

»X, ceC

e Also known as Markov Random F|eIds Markov networks ...

* The potential function can be understood as an contingency function of its
arguments assigning "pre-probabilistic” score of their joint configuration.

© Eric Xing @ CMU, 2005-2015 58



|. Quantitative Specification: Cligues

* For G={V,E}, a complete subgraph (clique) is a subgraph G'={V'cV,E'cE}
such that nodes in V' are fully interconnected

* A (maximal) clique is a complete subgraph s.t. any superset V'5V'is not
complete.

* A sub-cligue is a not-necessarily-maximal clique.

* Example: | |

* max-cliques = {A,B,D}, {B,C,D}, e
 sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons




Gibbs Distribution and Cligue Potential

* Defn: an undirected graphical model represents a distribution P(X,,...,X,)
defined by an undirected graph H, and a set of positive potential functions
. associated with cliques of H, s.t.

1
P(xl,...,xn) — —HWC(XC) (A Gibbs distribution)

where Z is known as the partition function: <<¢

Z= Z | [v.(x.)

.X, ceC

e Also known as Markov Random F|eIds Markov networks ...

* The potential function can be understood as an contingency function of its
arguments assigning "pre-probabilistic” score of their joint configuration.

© Eric Xing @ CMU, 2005-2015 60



I: Independence properties:

* Now let us ask what kinds of distributions can be represented by
undirected graphs (ignoring the details of the particular
parameterization).

* Defn: the global Markov properties of a UG H are

Y)} y
X

[(H) =X L Z|V):sep,, (X;Z

Z

© Eric Xing @ CMU, 2005-2015

61



Global Markov Independencies

* Let H be an undirected graph:

X4

* Bseparates A and Cif every path from a node in A to a node in C passes through
a node in B: sepy (4;C|B)

* A probability distribution satisfies the global Markov property if for any disjoint
A, B, C, such that B separates A and C, A is independent of C given B:
I(H)=1{4 L C|B:sep, (4;C|B)|

© Eric Xing @ CMU, 2005-2015
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Local Markov independencies

* For each node X, € V, there is unique Markov blanket of X, denoted
MB,., which is the set of neighbors of X; in the graph (those that
share an edge with X))

* Defn:
The local Markov independencies associated with H is:

lo(H): {X; LV ={X;}=MBy; | MBy,;: V i),

In other words, X is independent of the rest of the nodes in the graph given its immediate neighbors

© Eric Xing @ CMU, 2005-2015
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Soundness and completeness of global
Markov property

e Defn: An UG H is an I-map for a distribution P if I(H) — I(P), i.e., P
entails I(H).

* Defn: Pis a Gibbs distribution over H if it can be represented as
P(Xi,... X)) =— ch(x

* Thm (soundness): If P is a Gibbs distribution over H, then H is an I-
map of P.

* Thm (completeness): If —sep,(X; Z |Y), then X L,Z | Y in some P that
factorizes over H.



Other Markov properties

* For directed graphs, we defined I-maps in terms of local Markov
properties, and derived global independence.

* For undirected graphs, we defined I-maps in terms of global Markov
properties, and will now derive local independence.

* Defn: The pairwise Markov independencies associated with UG H =
(V:E) are [(H)={X LY \{X,Y}:{X,Y} ¢ E}

Xy L Xg|[{Xp, X3, X,

© Eric Xing @ CMU, 2005-2015
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Relationship between local and global Markov

properties

Thm 5.5.5. If P |= I(H) then P | = ,(H).

Thm 5.5.6. If P = I(H) then P | = I(H).
Thm 5.5.7.1f P>0and P |=1,(H), then P |=I(H).

Corollary (5.5.8): The following three statements are equivalent for a positive distribution P:

P |=1(H)
P =Ip(H)
P |=I(H)

* This equivalence relies on the positivity assumption.
* We can design a distribution locally



Hammersley-Clitfford Theorem

* If arbitrary potentials are utilized in the foIIowing product formula for probabilities,

P(xla"'a HWc( )

ceC

Z= Z [v.x.)

.X, ceC

then the family of probability distrlbutlons obtained is exactly that set which respects the
qualitative specification (the conditional independence relations) described earlier

* Thm : Let P be a positive distribution over V, and H a Markov network graph over V. If His an I-
map for P, then P is a Gibbs distribution over H.

© Eric Xing @ CMU, 2005-2015
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Perfect maps

* Defn: A Markov network H'is a perfect map for Pif for any X Y. Zwe
have that
sepH(X;Z\Y)c>P|:(XLZ\y)

 Thm: not every distribution has a perfect map as UGM.

* Pf by counterexample. No undi twork can capture all and only the
independencies encoded | <Y,




Where is the graph structure come from?

The goal:

* Given set of independent samples (assignments of random variables),
find the best (the most likely?) graphical model topology

ML Structural Learning for completely observed GMs

O & o &
> D j> & 25
O @

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,FT,T,F)
........ (B,E,A,C,R)=(FT,T.T,F)



Information Theoretic Interpretation of ML

¢ (0;,G;D)=log p(D|6,;,G)

= 10gH(H p('xn,i | X, 2.(G)> eml(G))j
- Z (Z log p('xn,i ‘ Xn,;r,—(G) ’ ‘9i|7r,-(G) )j

count(x,,X,. )
:MZ z v, - 10gp(xixﬁ,(G)>‘9ml(G>)j

LA\ XioXm(6)

=M | D P(x.X, q)log p(x;| Xm(G)’ezm(G))J

P\ MioXr(6)

From sum over data points to sum over count of variable states

© Eric Xing @ CMU, 2005-2013
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Information Theoretic Interpretation of ML
(con'd)

¢ (eGaGaD) :logﬁ(D|9GaG)

- MZ( 2 h(x. %, ) log (X, [ X, ), Hi”I(G))j

Xi:X7(6)

R ﬁ(’xiﬂxﬁ»(G)’eﬂﬁ-(G)) p(x,)
=M p(x.,x_ . )log — ’ —
Z X; ,XZ,”;G) o p(Xﬂ'i(G)) p('xz')

. p(x;, X1.(G)> ‘9i|;r.(G)) . .
=M p(x,X_ .- )]log—————- -M p(x;)log p(x,)
Z xl,;,w) o p(Xﬂi(G))p(xi) Z XZ

:MZ[A(XI.,X”I_(G))—MZ[:I(X;')

Decomposable score and a function of the graph structure

© Eric Xing @ CMU, 2005-2013
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Structural Search

0(2/12)
* How many graphs over n nodes?

O(n!)
* How many trees over n nodes?

* But it turns out that we can find exact solution of an optimal tree
(under MLE)!
e Trick: in a tree each node has only one parent!
e Chow-liu algorithm



Chow-Liu tree learning algorithm

* Objection function:

¢ (0,,G; D) =log p(D|6,,G) = |C(@H=MDI(x,x, )

:MZ[A(XI.,X”[(G))—MZ[:[(XJ

e Chow-Liu:

count(x;,x;)

* For each pair of variable x; and x; P(X,X)=

* Compute empirical distribution: ‘ M A( )

- ) p(x;,Xx.
. | f . . ](X17X/): Zp(xlﬂx/)log A A ’
Compute mutual information: s p(x;)p(x;)

* Define a graph with node x,, ..., x,

* Edge (l,j) gets weight i(X X)

19 J

© Eric Xing @ CMU, 2005-2013



Chow-Liu algorithm (con'd)

* Objection function:
¢ (0;,G;D)=log p(D|6;,G)

:Mzi(xiﬁxﬂi(G))_MZﬁ(X[)

= |C(G)= sz(xiale.(c;))

* Chow-Liu:
Optimal tree BN
 Compute maximum weight spanning tree
 Direction in BN: pick any node as root, do breadth-first-search to define

directions /CAD\ Q) ® (E)
* l-equivalence: © n) © ()
® € &) ® G—E

C(F)=rf €4yBY= (4, C)+ 1(C, D)+ I(C,E)



Structure Learning for general graphs

e Theorem:

* The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d>2

* Most structure learning approaches use heuristics

* Exploit score decomposition
* Two heuristics that exploit decomposition in different ways

* Greedy search through space of node-orders

* Local search of graph structures



Restricted Boltzmann Machines

hidden units

visible units

The Harmonium (Smolensky —'86)
History:

Smolensky ('86), Proposed the architechture.

Freund & Haussler ('92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton ('02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan ('02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), “Product of Student-T Distributions” (super-Gaussian)
© Eric Xing @ CMU, 2005-2015
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