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Review



Review: Directed Graphical Model

* Represent distribution of the form
p(X1,-+, Xn) = | [ p(Xilmw (X))
* Factorizes in terms of local conditional probabilities

e Each node has to maintain p(Xz' ‘W(Xz))

e Each variable is Conditional Independent of its non-descendants given its parents

the nodes before X; that are not \AD? /
its parents X; -~
P ‘ Xz W(XZ)‘T('(X,J

* Such an ordering is a “topological” ordering (i.e., parents have lower numbers than
their children)

Parents of X;



Review: Directed Graphical Model

For discrete variables, each node stores a conditional probability table (CPT)
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Review: independence properties of DAGs

* Defn: let Z(6) be the set of local independence properties encoded by DAG

G, namely:
T,(G) = {X 1L Z|dsepg(X; Z|Y)}

* Defn: A DAG &is an I-map (independence-map) of Pif I(&)c I A

* A fully connected DAG &is an I-map for any distribution, since Z(&)=Jc
1A for any P



Review: I-equivalence

* Which graphs satisfy Z(G) = {x1 AL x5|x3}?

* Defn : The skeleton of a Bayesian network graph G over V'is an undirected graph
over V that contains an edge {X, Y} for every edge (X, Y) in G.



Why Undirected GM?



DGM is not always a good choice...

X1 = X7 = Xz = X9 = Xy

air or land ? .



DGM is not always a good choice...

What if we cannot observe h ?



Undirected Graphical Models (UGM)

As in DGM, the nodes in the graph represent the
variables

Edges represent probabilistic interaction between
neighboring variables

Parametrization?
 |In DGM we used CPD (conditional probabilities) to
represent distribution of a node given others
 Forundirected graphs, we use a more symmetric
parameterization that captures the affinities
between related variables.

* Differences:
e Pairwise (non-causal) relationships
< * No explicit way to generate samples

%)
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What is UGM
and
What are they good for?



Undirected graphical models (UGM)
X

* Pairwise (non-causal) relationships

* Can write down model, and score specific configurations of the graph,
but no explicit way to generate samples

* Contingency constrains on node configurations



Social networks

Opinions of the students about HWO.
Query: Did Tassilo like the HWO given a few observation?
Links represent correlation between classmates.
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A Canonical Example: understanding complex
scene ...
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Information retrieval

© Eric Xing @ CMU, 2005-2015
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4
Undirected graphical models (UGM)

Defn (also called Markov Network): For a set of variables X = {z1,---,Zn} a Markov
network is defined as a product of potentials on subsets of the variab ?

@/(%M) (€1, .., 2p) Hqsc ?
B 4% ) Fal) p A / @

Maximal clique

@(3! )

This is called potential = 0
(this does not have to be  pef: A maximal clique is

Normalizer to ensure it is probability) a clique that cannot be
a p is a probability extended by including one

more adjacent vertex,
meaning it is not a subset of a

larger clique.
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Independence



Remember the Markov Blanket for BN

Structure: DAG

e Meaning: a node is conditionally - -

independent of every other node in the
network outside its Markov blanket

Ancestor

Descendent

19



About Conditional Independence

Global Markov Property: X 4 1l Xpg |XC if and only if C separates A from B (there is no path connecting

them) L}( / C/
O] =0 1.2} L (6,7)1{3.4.5)

€ 6
P

Markov Blanket (local property) is the set of nodes that renders a node t conditionally independent of all
the other nodes in the graph

t1LV— mb(t) — {t}mb(t) ~ Mb()=1{2,3,4,6,7}

\s_ _—/

All nodes in Markov Blanket
the graph 0




Example of Dependencies

Pairwise:1 | 7| rest

local: 1 1 rest|2,3

Global: 1,2 1 6,7|3,4,5 X, — X, @7\4 — X,
| |
X @ - X3 @ X10
1 1 7|rest?, 1 L 20|rest?,1 1 2|rest? |
1 L rest|?, 8 L re§J|? ?L X1 — X @ Xy — Xos

1,2¢15§¢29\? ' ' b '




Example of Dependencies

Pairwise:1 | 7| rest

local: 1 1 rest|2,3

Global: 1,2 1 6,7|3,4,5

Global = Local = Pairwise

~_ ~

])( 1‘) > 0 For proof: See page 119 of the book by Koller and Friedman
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UGM and DGM

Directed Models

Graphical Models

Probabilistic Models

Undirected Modelg

Triangulation: UGM = DGM
Moralization: DGM = UGM
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Not all UGM can be represented as DGM

@,{LB\%
(A (A
(5 (8
(o) (&) (o) (&) L ><.
SOERTY
(< ¢S
AL C|D,B ALl C|D,B AL C|D,B
B 1 D|A,C X B L DIA,C x

B 1 D|A,C
In this graph, B and D are
marginally independent



Not all DGM can be represented as
X

Undirected model fails to capture the marginal independence|(
holds in the directed model at the same time as =(X L Y|Z

UGM
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What is this “Clique™?



Undirected graphical models (UGM)

Defn (also called Markov Network): For a set of variables X = {z1,---,Zn,} a Markov
network is defined as a product of potentials on subsets of the variables X, C X
C
1
p(xla'“axn) H¢(‘(X(’)

Maximal clique
This is called potential = 0

(this does not have to be  pef: A maximal clique is

Normalizer to ensure it is probability) a clique that cannot be
a p is a probability extended by including one

more adjacent vertex,
meaning it is not a subset of a

larger clique.
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Examples
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Interpretation of Clique Potentialsoq/@ﬁ’@
O O ONNN G St

* The model implies X || Z’Y This independence statement implies (by definition) that the joint
must factorize as: ) “Ki}?
p(z,y,x) =p(y)plalyp(2ly)
...but also we can write it%g(ﬁja— g/_),',?_(_z_ ‘_y_)_:
...but also ... -(]_?ZL_E_| _y-)]_?(%_, _y_)_‘

_______________

-~

ba(y, )

________________

()1 (I
...but also ...
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Interpretation of Clique Potentials

o & j@ﬂ

Take-home message about potentials:
* Those are not necessarily marginals or conditionals.
* The positive clique potentials can only be thought of as general

"compatibility", "goodness" or "happiness" functions over their variables,
but not as probability distributions.



Example UGM — using max cliques

WV, (Xip4) W, (X534) |

1

P'(xy,%5,X3,X4) = E‘//¢~(X124)><%(X234)

/ = Zl//c(x124)xl//c(xz34)

X1,X2,X3,X4

* For diglcrete nodes, we can represent P(X;.,) as two 3D tables instead of one
4D table

© Eric Xing @ CMU, 2005-2015 31



L~)’>MZ@
Example UGM — using subcliques ;Wﬂ@
- ﬁﬁv&’wgékﬁ)%(c,m

.\'2? ‘p :
" 1 8)(’/
P (xl,xz,x3,x4)=EHl//U.(xU) gl
ij
_ 1
/= Z Hw’j (Xif) = E%z (X12 W14 (X4 W 23 (X3 )W 24 (X4 )W 34 (X34)
X1,X2,X3,X4 1]

* We can represent P(X,.,) as 5 2D tables instead of one 4D table
* Pair MRFs, a popular and simple special case
* Are two graphs equivalent (Z(P’) and Z(P")?

© Eric Xing @ CMU, 2005-2015 32



Example UGM — canonical representation

° P(X1,X,%3,X4)
1
G.G :EWC(X124)X‘//C(X234)
X W12 (X1 W1q (X1 W 23 (X3 )W 24 (X4 )W 34 (X34)

e X W1 (X)W (X)W 3 (X34 (xy)

W (X124) XY (Xp34)
Z= Z XW1a (X12 W14 (X1 W23 (X203 W24 (X24 )W 34 (X34)
T oy () wo (6 )5 (x5 )W 4 (34)

e Most general, subsume P'and P" as special cases

© Eric Xing @ CMU, 2005-2015
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Hammersley-Clitfford Theorem

* |f arbitrary potentials are utilized in the following product formula for

probabilities,
P(xla"'a HWc( )

ceC

Z= Z [v.x.)

.X, ceC

then the family of probability distributions obtained is exactly that set which respects the
qualitative specification (the conditional independence relations) described earlier

* Thm : Let P be a positive distribution over V, and H a Markov network graph over V. If H
is an I-map for P, then P is a Gibbs distribution over H.

© Eric Xing @ CMU, 2005-2015 34



Factor Graphs



Factor Graph

wlg? f(iEl,ZEQ)
X2

30 f(x17x3)
140~ XEf(@,CM)

Random Factors
variables

* A factor graph is a graphical model representation that unifies directed and
undirected models

* It is an undirected bipartite graph with two kinds of nodes.

* Round nodes represent variables,
* Square nodes represent factors

and there is an edge from each variable to every factor that mentions it.
* Represents the distribution more uniquely than a graphical model



Factor Graph for UGM

bo




Factor Graph for DGM

& @

Q p(xs|zy, x2)
() (@) &

One factor per CPD (conditional distribution) and connect the factor to all the
variables that use the CPD




Practical Examples



Exponential Form

Remember the Gibbs distribution: | C = -
. | -
p(ﬂfl, « e ,an) — E H: wc(')(c) | So-called Potentials >0
C c=1==-=-=. /
1 g -
. o e — - I Energy of the clique, can be
p(xl’ ? Cl?n) Z H CXp (_I\¢C(XC))I positive/negative
C:]_ ....... -

Free Energy of the system (log of prob):

H(xh T 73371) — ZgbC(‘XC)

A powerful parametrization (log-linear model): C
- o .
H(chau' 73371;;_9_) E lfC(X) 9
Param . Feature function 0



Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x; € {—1,+1} or x; € {0,1}) is called a
Boltzmann machine e

p(CEl,CCQ,CUg,ZCLL;H;CY) — Z(Q Oé) eXPp ZHZJ.CCZCU] —+ Zaixi
’ ij i

Hence the overall energy function has a quadratic form.

H(x;0,p) = (x — p)" O(x — p)



Ising models

* Nodes are arranged in a regular topology (often a regular packing grid) and
connected only to their geometric neighbors.

1
p(X)=— exp{ D2 O0XX;+2, QiOXi}

i,jeN,

* Same as sparse Boltzmann machine, where 6,70 iff ;,J are neighbors.
* e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.

* Potts model: multi-state Ising model.

© Eric Xing @ CMU, 2005-2015
Vilp)



* Observed can pixels, signal in speech,

Restricted Boltzmann Machines (RBM)

word in a document

hidden units (h)
Unobserved has “a notion” of summary
of data

* One can use it as building block for more ‘
complicated models

visible units (x)

p(z, h;0) = exp (Z 0ipi(x) + Z 0;pi(h;) + Z 0:,5(Tiy hj) — A(9)>

43



Properties of RBM

* Factors are marginally dependent.

* Factors are conditionaIIK independent
given observations on the visible nodes.

p(ha,-  halx) = | [ p(hin[x)

* |terative Gibbs sampling to generate
pairs of (x,h).

* Learning with contrastive divergence

© Eric Xing @ CMU, 2005-2015
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Conditional Random Fields

* For example: part of speech labeling
 We are interested in Discriminative (not joint):
i

%)

%)

Py 1N =5 eXp{ZC: 0.1 (x, yc)}
™)

6

X X, © Eric Xing @ CMU, 2005-2015




Summary

)« )« )

* Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”,
“synergism”, etc. between entities
* Local and global independence properties identifiable via graph separation criteria
* Defined on clique potentials

* Can be used to define either joint or conditional distributions

* Generally intractable to compute likelihood due to presence of “partition
function”

* Therefore not only inference, but also likelihood-based learning is difficult in general

* Important special cases:
* Ising models
 RBM
* CRF



