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Probabilistic Inference and Learning

• We now have compact representations of probability distributions:  Graphical Models
• A GM M describes a unique probability distribution P

• Typical tasks:
• Task 1: How do we answer queries about PM, e.g., PM(X|Y) ?

• We use inference as a name for the process of computing answers to such queries

• Task 2: How do we estimate a plausible model M from data D?
i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.
iii. When not all variables are observable, even computing point estimate of M need to do inference to impute the missing 

data.
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By this  I mean the graph 
structure and/or the 
parameters
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Query 1: Likelihood

• Most of the queries one may ask involve evidence
• Evidence e is an assignment of values to a set E variables in the domain
• Without loss of generality E = { Xk+1, …, Xn }

• Simplest query: compute probability of evidence

• this is often referred to as computing the likelihood of  e
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• Often we are interested in the conditional probability distribution of a variable 
given the evidence

• this is the a posteriori belief in X, given evidence e

• Marginalization:  the process of summing out the “unobserved” or "don't care" 
variables z is called.
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Query 2: Conditional Probability
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• Prediction : what is the probability of an outcome given the starting condition (eg ! " # )

• the query node is a descendent of the evidence

• Diagnosis: what is the probability of disease/fault given symptoms (eg !(#|") )

• the query node an ancestor of the evidence

• Note: The directionality of information flow between variables is not restricted by the directionality of the 
edges in a GM.

• You will see more application during Learning under partial observation

A CB
?

A CB
?

Applications of a posteriori Belief
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l In this query we want to find the most probable joint assignment (MPA) for 
some variables of interest

l Such reasoning is usually performed under some given evidence e, and 
ignoring (the values of) other variables z :

l this is the maximum a posteriori configuration of y.
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Query 3: Most Probable Assignment
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Applications of MPA
• Classification

• find most likely label, given the evidence
• Explanation 

• what is the most likely scenario, given the evidence

Cautionary note:

• The MPA of a variable depends on its "context"---the set of variables been jointly 
queried

• Example:
• MPA of Y1 ?
• MPA of (Y1, Y2) ?

y 1 y 2 P(y 1 ,y 2 )
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Thm:
Computing P(X = x | e) in a GM is NP-hard

l Hardness does not mean we cannot solve inference. It simply says that 
there exist difficult inference problems. It depends on the structure.

l It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
l For particular families of GMs, we can have provably efficient procedures

Complexity of Inference
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Landscape of inference algorithms

• Exact inference algorithms
• The elimination algorithm
• Message-passing algorithm (sum-product, belief propagation)
• The junction tree algorithms      

• Approximate inference techniques
• Stochastic simulation / sampling methods
• Markov chain Monte Carlo methods
• Variational algorithms
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Variable Elimination



• A signal transduction pathway:

• Query: P(e)

• By chain decomposition, we get
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a naïve summation needs to 
enumerate over an 
exponential number of  
terms

What is the likelihood that protein E is active?

Marginalization and Elimination
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Elimination on Chains

• Rearranging terms (First sum !, then ", ...)
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• Now we can perform innermost summation

• This summation "eliminates" one variable from our summation argument at a "local 
cost".

A B C EDX
Elimination on Chains
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Elimination in Chains

• Rearranging and then summing again, we get
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• Eliminate nodes one by one all the way to the end, we get

• Complexity:
• A clever elimination takes !(#$%) versus !($') for the naïve approach.
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Associativity of matrix multiplication 

…

Room 1 Room 2 Room 3

x1 x2 xT

p(xt+1 = i|xt = j) = Mij2

4
0.7 0.5 0
0.3 0.3 0.5
0 0.2 0.5

3

5

p(x1, · · · , xT ) = p(x1)
T�1Y

t=1

p(xt+1|xt)



Associativity of matrix multiplication 

…

Room 1 Room 2 Room 3

x1 x2 xT

p(xt+1 = i|xt = j) = Mij2

4
0.7 0.5 0
0.3 0.3 0.5
0 0.2 0.5

3

5

p(x5 = i|x1 = 1) =
X

x4,x3,x2

p(x5|x4)p(x4|x3)p(x3|x2)p(x2|x1 = 1)

= [M4v]i



Great Ideas in ML: Message Passing

3 
behind 
you

2 
behind 
you

1 
behind 
you

4 
behind 
you

5 
behind 
you

1 
before
you

2 before
you

there's
1 of me

3 before
you

4 before
you

5 before
you

Count the soldiers
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Great Ideas in ML: Message Passing

3 
behind 
you

2 before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 
of us

only see
my incoming
messages

2 31

33adapted from MacKay (2003) textbook

2 before
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Count the soldiers



Great Ideas in ML: Message Passing

4 
behind 
you

1 before
you

there's
1 of me

only see
my incoming
messages

34adapted from MacKay (2003) textbook

Belief:
Must be
2 + 1 + 3 = 6 
of us
2 31

Belief:
Must be
1 + 1 + 4 = 6 
of us

1 41

Count the soldiers



What about a general DAG?



Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree

40
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Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of  tree

41
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree

43
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Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

wouldn't work correctly

with a 'loopy' (cyclic) graph

44
adapted from MacKay (2003) textbook
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A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network
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• Query: P(A |h)
• Need to eliminate: B,C,D,E,F,G,H

• Initial factors:

• Choose an elimination order: H,G,F,E,D,C,B

• Step 1: 
• Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

• This step is isomorphic to a marginalization step:
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Example: Variable Elimination
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• Query: P(A |h)
• Need to eliminate: B,C,D,E,F,G

• Initial factors:

• Step 2: Eliminate G
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Example: Variable Elimination
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• Query: P(A |h)
• Need to eliminate: B,C,D,E,F

• Initial factors:

• Step 3: Eliminate F
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Example: Variable Elimination

å=
f

hf femafpaem ),()|(),( B A

DC

E

© Eric Xing @ CMU, 2005-2015 55

B A

DC

E F



B A

DC

E

• Query: P(A |h)
• Need to eliminate: B,C,D,E

• Initial factors:

• Step 4: Eliminate E
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Example: Variable Elimination

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

Þ
Þ
Þ

å=
e

fe eamdcepdcam ),(),|(),,(
B A

DC

© Eric Xing @ CMU, 2005-2015 56



• Query: P(A |h)
• Need to eliminate: B,C,D

• Initial factors:

• Step 5: Eliminate D
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Example: Variable Elimination
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• Query: P(A |h)
• Need to eliminate: B,C

• Initial factors:

• Step 6: Eliminate C
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DC

E F

G H

Example: Variable Elimination
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• Query: P(A |h)
• Need to eliminate: B

• Initial factors:

• Step 7: Eliminate B
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Example: Variable Elimination
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• Query: P(A |h)
• Need to eliminate: B

• Initial factors:

• Step 8: Wrap-up
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Example: Variable Elimination
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• A graph elimination algorithm

moralization
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graph elimination

Understanding Variable Elimination
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Graph elimination

• Begin with the undirected GM or moralized BN

• Graph G(V, E) and elimination ordering I

• Eliminate next node in the ordering I
• Removing the node from the graph
• Connecting the remaining neighbors of the nodes

• The reconstituted graph G'(V, E')
• Retain the edges that were created during the elimination procedure
• The graph-theoretic property: the factors resulted during variable elimination are 

captured by recording the elimination clique
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• A graph elimination algorithm

• Intermediate terms correspond to the cliques resulted from elimination
moralization
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Elimination Cliques
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Graph elimination and marginalization

• Induced dependency during marginalization vs. elimination clique
• Summation <-> elimination
• Intermediate term <-> elimination clique
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A clique tree
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Message from one C1 to C2:
Multiply all incoming messages 
with the local factor and sum over 
variables that are not shared 



Complexity

• The overall complexity is determined by the number of the largest 
elimination clique
• What is the largest elimination clique? – a pure graph theoretic question

• Tree-width k: one less than the smallest achievable value of the cardinality of the 
largest elimination clique, ranging over all possible elimination ordering

• “good” elimination orderings lead to small cliques and hence reduce complexity 
(what will happen if we eliminate "e" first in the above graph?)

• Find the best elimination ordering of a graph --- NP-hard
à Inference is NP-hard

• But there often exist "obvious" optimal or near-opt elimination ordering  
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Examples

• Star

• Tree
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More example: Ising model
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Limitation of Procedure Elimination

• Limitation
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• Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination 
for every such query? 

• Elimination º message passing on a clique tree

• Messages can be reused E F
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• Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination 
for every such query? 

• Elimination º message passing on a clique tree
• Another query ...

• Messages mf and mh are reused, others need to be recomputed
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Summary

• The simple Eliminate algorithm captures the key algorithmic Operation underlying probabilistic 
inference:

--- That of taking a sum over product of potential functions

• What can we say about the overall computational complexity of the algorithm? In particular, how 
can we control the "size" of the summands that appear in the sequence of summation operation. 

• The computational complexity of the Eliminate algorithm can be reduced to purely graph-
theoretic considerations. 

• This graph interpretation will also provide hints about how to design improved inference 
algorithm that overcome the limitation of Eliminate. 
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