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Today’s Lecture
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p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Today’s Lecture

How do we define and learn these conditional
and marginal distributions for a Bayes Net?
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Today’s Lecture
1. Exponential Family Distributions

A candidate for marginal distributions, p(Xi)

2. Generalized Linear Models
Convenient form for conditional distributions,
p(Xj | Xi)

3. Learning Fully Observed Bayes Nets
Easy thanks to decomposability
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1. EXPONENTIAL FAMILY
A candidate for marginal distributions, p(Xi)

8



Why the Exponential Family?
1. Pitman-Koopman-Darmois theorem: it is the only 

family of distributions with sufficient statistics that 
do not grow with the size of the dataset

2. Only family of distributions for which conjugate 
priors exist (see Murphy textbook for a description)

3. It is the distribution that is closest to uniform (i.e. 
maximizes entropy) – subject to moment matching 
constraints

4. Key to Generalized Linear Models (next section)
5. Includes some of your favorite distributions!
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Adapted from Murphy (2012) textbook



Whiteboard

• Definition of multivariate exponential family
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Whiteboard

• Example 1: Categorical distribution
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Whiteboard

• Example 2: Multivariate Gaussian distribution
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Moments and the Partition Function

13

p(x; ✓) = exp
⇥
xT ✓ �A(✓)

⇤
h(x)



Moments and the Partition Function
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Sufficiency
• For !(#; %), T(x) is sufficient for q if there is no information in X

regarding q beyond that in T(x).
– We can throw away X for the purpose of inference w.r.t. q . 

– Bayesian view

– Frequentist view

– The Neyman factorization theorem
• T(x) is sufficient for q if  
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Sufficiency

• Let’s assume xi
iid⇠ p(x; ✓)
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MLE for Exponential Family
l For iid data, the log-likelihood is

l Take derivatives and set to zero:

l This amounts to moment matching.
l We can infer the canonical parameters using
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Examples
l Gaussian:

l Multinomial:

l Poisson:
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Whiteboard
• Bayesian estimation of exponential family

• We have observed iid samples and we are interested in 
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Posterior Mean Under Conjugate Prior
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2. GENERALIZED LINEAR MODELS
Convenient form for conditional distributions, p(Xj | Xi)
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Why Generalized Linear Models? (GLIMs)
1. Generalization of linear regression, logistic regression, 

probit regression, etc.
2. Provides a framework for creating new conditional 

distributions that come with some convenient properties 
3. Special case: GLMs with canonical response functions are 

easy to train with MLE.
4. No Free Lunch: What about Bayesian estimation of GLMs?

Unfortunately, we have to turn to approximation 
techniques since, in general, there isn't a closed form of the 
posterior.
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Generalized Linear Models (GLMs)
l GLM

l The observed input x is assumed to enter into the model 
via a linear combination of its elements

l The conditional mean µ is represented as a function f(x) 
of x, where f is known as the response function

l The observed output y is assumed to be characterized 
by an exponential family distribution with conditional 
mean µ. 
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Whiteboard

• Constructive definition of GLMs
• Definition of GLMs with canonical response functions
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Examples of the canonical response functions
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Whiteboard

• MLE with GLM with Canonical response
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MLE for GLMs with canonical response

• Log-likelihood

• Derivative of Log-likelihood

• Online learning for canonical GLMs
– Stochastic gradient ascent = least mean squares (LMS) algorithm:
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Batch learning for canonical GLMs

• The Hessian matrix
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Involves the second 
derivative of !(#)
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Iteratively Reweighted Least Squares (IRLS)
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Iteratively Reweighted Least Squares (IRLS)
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Iteratively Reweighted Least Squares (IRLS)
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Examples
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Practical Issues

39

• It is very common to use regularized maximum likelihood.

– IRLS takes !(#$%) per iteration, where N = number of training cases and d = 
dimension of input x.

– Quasi-Newton methods, that approximate the Hessian, work faster.
– Conjugate gradient takes !(#$) per iteration, and usually works best in 

practice.
– Stochastic gradient descent can also be used if N is large c.f. perceptron rule.
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Today’s Lecture
1. Exponential Family Distributions

A candidate for marginal distributions, p(Xi)

2. Generalized Linear Models
Convenient form for conditional distributions,
p(Xj | Xi)

3. Learning Fully Observed Bayes Nets
Easy thanks to decomposability
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3. LEARNING FULLY OBSERVED BNS
Easy thanks to decomposability
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Classification

Generative and discriminative approach

Q

X

Q

X

Regression

Linear, conditional mixture, nonparametric

X Y

Density estimation

Parametric and nonparametric  methods

µ,s

X
X

Simple GMs are the building blocks of 
complex BNs
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l Consider the distribution defined by the directed acyclic GM:

l This is exactly like learning four separate small BNs, each of which consists of a 
node and its parents.

Decomposable likelihood of a BN

),,|(),|(),|()|()|( 432431321211 qqqqq xxxpxxpxxpxpxp =

X1

X4

X2 X3

X4

X2 X3

X1
X1

X2

X1

X3
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Recall from Lecture 2…



Learning Fully Observed BNs
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✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)
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log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax
✓1

log p(X1|✓1)

✓⇤2 = argmax
✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax
✓3

log p(X3|✓3)

✓⇤4 = argmax
✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax
✓5

log p(X5|X3, ✓5)

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)



Summary
1. Exponential Family Distributions

– A candidate for marginal distributions, p(Xi)
– Examples: Multinomial, Dirichlet, Gaussian, Gamma, Poisson
– MLE has closed form solution
– Bayesian estimation easy with conjugate priors
– Sufficient statistics by inspection 

2. Generalized Linear Models
– Convenient form for conditional distributions,

p(Xj | Xi)
– Special case: GLIMs with canonical response 

• Output y follows an exponential family
• Input x introduced via a linear combination 

– MLE for GLIMs with canonical response by SGD
– In general, Bayesian estimation relies on approximations

3. Learning Fully Observed Bayes Nets
– Easy thanks to decomposability
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