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How do we define and learn these conditional
and marginal distributions for a Bayes Net?



Today’s Lecture

1. Exponential Family Distributions
A candidate for marginal distributions, p(X,)

2. Generalized Linear Models

Convenient form for conditional distributions,
P(Xj | X))

3. Learning Fully Observed Bayes Nets
Easy thanks to decomposability



marginal p(X)

1. EXPONENTIAL FAMILY



Why the Exponential Family?

Pitman-Koopman-Darmois theorem: it is the only
family of distributions with sufficient statistics that
do not grow with the size of the dataset

Only family of distributions for which conjugate

It is the distribution that is closest to uniform (i.e.

maximizes entropy) — subject to moment matching
constraints

Key to Generalized Linear Models (next section)
Includes some of your favorite distributions!

Adapted from Murphy (2012) textbook



Whiteboard

* Definition of multivariate exponential family



Whiteboard

* Example 1: Categorical distribution



Whiteboard

* Example 2: Multivariate Gaussian distribution



Moments and the Partition Function

p(x;0) = exp [x' 0 — A(0)] h(z)



Moments and the Partition Function
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Sufficiency

* Forp(x;8), T(x) is sufficient for @ if there is no information in X
regarding dbeyond that in 7(x).

— We can throw away X for the purpose of inference w.r.t. 4.

— Bayesian view p(<9|T(x>,x)=
— Frequentist view p(x | T(@), )= p(x| T(x)

— The Neyman factorization theorem

« J(X)is sufficient for Hif
- /
)

CE

~ N\ P T(x),0) =y (T(x), ), (x, T(x))
@ = p(x|60) = g(T(x),0)h(x,T(x))
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Sufficiency
p(z;0) = exp [0 T'(x) — A(0)] h(z)

* Let’s assum}/@

p(X17°'° 7Xn;9) —
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e Foriid data, the log-likelihood is a X P ZD/ %)
S
AT ¢ (11:D) = loth<x>exp?fT<x> A

e [ake derivatives and set to zero:

e This amounts to moment matching.
e \We can infer the canonical parameters using
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Examples s3
e (Gaussian:

n= lZl,u;—%Vec(Zl )J
T(x)= [x; Vec(xxr)] ) 1 , i 1
A(n) = %ur2‘1u+%log|2| —= My N ; 1(x,) Y, ;xn
h(X) _ (27[)—1(/2

e Multinomial:

A(U) = _1H(I—KZ_17Tkj = ln(ieﬂkj
k=1 k=1
h(x)=1

e Poisson: -

T(x)=x 1
A(U)=/1=e’7 jﬂMLE:Nan
1 n

h(x)= N
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Whiteboard *

* Bayesian estimation of exponential family e
p(x;0) = exp [0" T(x) — A(6)] h(x)

e We haveo i es and we are interested in ‘
S AP B) #O) )

— e
PL& V) D e




Posterior Mean Under Conjugate Prior
pl;0) = exp [0TT(z) — A(6)] h(x) 0

p(0;1,n0) = exp (TTH — ngA(9) — A(r, ng)) ‘

p(0|D) = p(0; T + ZT(:L‘Z), n + ng)

 Posterior mean of 6




P(Xj | X))

2. GENERALIZED LINEAR MODELS



7)) Why Generalized Linear Models? (GLIMs) Yy

.~ Generalization of linear regression, logistic regression, @ v

probit regression, etc. oy

2. Provides a framework for creating new conditional
distributions that come with some convenient propertie

3. Special case: GLMs with canonical response functions are
easy to train with MLE.

4. No F% Lunch: What about Bayesian estimation of GLMs?
Unfortunately, we have to turn to approximation
techniques since, in general, there isn't a closed form of the
posterior.



Generalized Linear Models (GLMs)

=

o GLM

The observed input xis assumed to enter into the model
via a linear combination of its elements &= 0" x

The conditional mean x is represented as a function A ¢)
of &£, where fis known as the response function

The observed output yis assumed to be characterized

by an exponential family distribution with conditional
mean L.

© Eric Xing @ CMU, 2005-2015
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Whiteboard

* Constructive definition of GLMs
* Definition of GLMs with canonical response functions



Examples of the canonical response functions

Distrib. Link g(p) 0 =(p) p=1"160)=E|[y|
N(p,0%)  identity 0 =p p=~0
Bin(N, ) logit 0 = l()g(]—’_'T) i = sigm(60)
Poi(p) log 0 = log () p=e’

w ~1

/ 771 = > Iul -« > 9,
g —1
£; W
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Whiteboard

* MLE with GLM with Canonical response



MLE for GLMs with canonical response

» Log-likelihood x=| . 7
L(w) = Z log h(y;) + Z (yiw" z; — A(n;)) —__y__ R
Derivative of Log-likelihood v, () - > (wy - L& > N
p2RCD
— 14 ) This is a function of w

* Online learning for canonical GLMs
— Stochastic gradient ascent = least mean squares (LMS) algorithm:

w' ™ = w' oy — pp) e

Step length 33



Batch learning for canonical GLMs

x,
. [ X: .
e The Hessian matrix :
—x, ——
1 N _y1_
H = ) _ | )2
o Y=\
=1 :
L Vn
Involves the second S — diao dpy dpn
derivative of A(0) — ld‘g( df,’ """ dln )
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Iteratively Reweighted Least Squares (IRLS)

XT( ,U/ Distrib. Link g(p) 6 = ¥(p) p=1"10) =E|[y]
N(p,0°)  identity 0 = 1 ==~
in(N,u) logit 0 =log(1£-) p = sigm(0)

Bin(N, u - = sig
(]/11 T Pox{s.) log 0 = log(p) p=e’
I — ——X SX
O'A-n

(1(-)

MOdS with cost function d
t+1 _ 1t —1 t t _ﬁ-
w Tt =w" + H H(w")VL(w") ) C- n_
= (X"S(w")X) " @M @(y — )]
— TS(wt)X)_1 X'S(wh)z! @) Zézfzw%wt + S(wH) "y — uh)
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Iteratively Reweighted Least Squares (IRLS)

Vuwl(w) = ). (y — ) Distrib.  Link g(11) 0 = 1(p) w=1"1(0) =E[y]
N(p,0°)  identity 0 = p==0
Bin(N, ) logit 0 = l()g(l—fj) i = sigm(0)
s Z (]/11 B LXFSX Poi(pu) log 0 = log(p) p=e’
o2 (l(-) o2

* Recall Newton-Raphson methods with cost function
w = wt + HH (w')VL(w?)

— (XTS(wt)X)_1 XS (wh)Xw' + X (y — )]
(X7 s(w)x) " X st | 2t = Xut + S(w') Ly — )

it looks lik@)‘lXTy
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Iteratively Reweighted Least Squares (IRLS)

vwﬁ(w) p— XT (y — /’L) I)istrib.. ?ink g() 0 = (u) 1,

= 1(0) = E [y]
[ 2 fentity 0= i T

J [7) )
Bin(N, ) logit H:l()g(l—"j) 7, si@

H = —i‘ E (llliXixrr = ——.,XTSX' Poi(y) log U =Tog(p) =g’

Recall Newton-Raphson methods with cost function
w = wt + HH (w')VL(w?)

= (XTS(wt)X)_1 XS (whXw' + X (y — )]

= (XTS(w")X) " XTS(wb)z" z' = Xw' + S(w') "y — 1)
* This can be understood as solving the following " Iteratively reweighted
least squares " problem

w'™ = arg max (2" — Xw)?/S¥u0") (2" — Xw)

w 37



Examples

T N | | o
v L: w) = X — Distrib. Link g(p) 6 = ¥(p) p=1""0)=E|yl
w ( ) (y ,U/) N(u,0%)  identity 0 = =~
| N (]’“ | Bin(N, ) logit 0 = 1();;‘(1—1_’7) i = sigm(6)
Ly 3 — O — ’(I
H- — — ) XT _ __XTSX Poi(pu) log 0 = log(p) L= €

1

‘ Xi
o2 4 1 db; o

—

* Recall Newton-Raphson methods with cost function
w = wt + HH (w')VL(w?)

— (XTS(wt)X)_1 XS (whXw' + X (y — )]

— (XTS(w"X) " XTS(w')z! 2 = Xuw' + S(w') "y — p')

w'™ = arg max(z' — Xw)? S(wh) (2" — Xw)

w
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Practical Issues

* |tis very common to use regularized maximum likelihood.

x,0)= L =o(y0"x)

14e7?" -

p(0) ~ Normal(0, A1)

16) =Y loglo(,0"x,))- % 070

p(y==1

— IRLS takes O(Nd?) per iteration, where NV= number of training cases and d'=
dimension of input x.

— Quasi-Newton methods, that approximate the Hessian, work faster.

— Conjugate gradient takes O(Nd) per iteration, and usually works best in
practice.

— Stochastic gradient descent can also be used if N is large c.f. perceptron rule.

© Eric Xing @ CMU, 2005-2015



Today’s Lecture

1. Exponential Family Distributions
A candidate for marginal distributions, p(X,)

2. Generalized Linear Models

Convenient form for conditional distributions,
P(Xj | X))

3. Learning Fully Observed Bayes Nets
Easy thanks to decomposability



3. LEARNING FULLY OBSERVED BNS



Simple GMs are the building blocks of
complex BNs

u,o
O
Parametric and nonparametric methods X
X
X Y
Linear, conditional mixture, nonparametric O O
Q Q
Generative and discriminative approach i X i X

© Eric Xing @ CMU, 2005-2015 52



Decomposable likelihood of a BN

e Consider the distribution defined by the directed acyclic GM:

p(x|0)=p(x |6)p(x,|x,0,)p(x;s| x,,605) p(x, | x,,%;,6,)

e This is exactly like learning four separate small BNs, each of which consists of a
node and its parents.

© Eric Xing @ CMU, 2005-2015 53



Learning Fully Observed BNs

9*

— argin ng(X17X27X37X47X5))
06

— argmax 10gp<X5|X37 95) + logp(Xll‘XQa X37 04)
e @O ___

+log p(X3|03) 4 log p(X2| X1, 02)
+log p(X1]61)

= argmax log p(X1|601)
01

= argmaxlog p(Xo| X1, 02)
02

= argmax log p(X3|03)
03

* = argmax logp(X4’X27 X37 94)

04

= argmax log p(X5[ X3, 05)
05
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Summary

1. Exponential Family Distributions
— A candidate for marginal distributions, p(X;)
— Examples: Multinomial, Dirichlet, Gaussian, Gamma, Poisson
—  MLE has closed form solution
— Bayesian estimation easy with conjugate priors
— Sufficient statistics by inspection
2. Generalized Linear Models
—  Convenient form for conditional distributions,
P(Xj | X))
—  Special case: GLIMs with canonical response

. Output y follows an exponential family
. Input x introduced via a linear combination

—  MLE for GLIMs with canonical response by SGD

— In general, Bayesian estimation relies on approximations
3. Learning Fully Observed Bayes Nets

—  Easy thanks to decomposability



