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3. Objective

Choose the objective to be log-likelihood:

(Assign high probability
to the things we observe
and low probability to
everything else)

Tune the parameter
function
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MLE for Undirected GMs

* Today’s parameter estimation assumptions:
1. The graphical model structure is given
2. Every variable appears in the training examples
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Questions

. What does the likelihood objective accomplish?

s likelihood the right objective function?
How do we optimize the objective function (i.e. learn)?

. What guarantees does the optimizer provide?
. (What is the mapping from data = model? In what ways

can we incorporate our domain knowledge? How does this
impact learning?)



O/O@ Options for MLE of MRFs /=~
* Setting I wc(wc) — Hc{aﬁc{
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (IPF) ??C’@

. Setting II: Yol(ze) = exp(0 - fzc))

C. Generalized Iterative Scaling
D. Gradient-based Methods
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Options for MLE of MRFs

. Setting I: Vo(xe) = 0,z
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (IPF)

. Setting II: Yol(ze) = exp(0 - fzc))
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Whiteboard

* Derivative of log-likelihood with respect to potentials



Discrete Variables (Tabular clique Potentials)

* Remember categorical distribution
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Lookup table Param Value for Y,
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Whiteboard

* Derivative of log-likelihood for the tabular clique potentials
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Conditions on Clique Marginals

Derivative of log-likelihood

d L(()) :Zﬂ[y( n] l N @

O(i")(.'(y(')
Hence, for the maximum likelihood parameters, we know that:

—
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In other words, at the maximum likelihood setting of the parameters,
for each clique, the model marginals must be equal to the observed
marginals (empirical counts).

This doesn’t tell us how to get the ML parameters, it just gives us a
condition that must be satisfied when we have them.
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Options for MLE of MRFs

+ Setting I: Yo(xe) = 00,z
A. MLE by inspection (Decomposable Models) — easy cases
B. lterative Proportional Fitting (IPF)

. Setting II: Yol(ze) = exp(0 - fzc))

C. Generalized Iterative Scaling
D. Gradient-based Methods



Decomposable Graphs
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Decomposable Graphs

a.b.c b.c.d

o(a,b,c)o(b,e,d) m’(b- c,d)
B p(c.b)

pla,b,c,d) =



Decomposable Graphs

* Definition: Graph is decomposable if it can be recursively
subdivided into sets A, B, and S such that S separates A and
B.
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Decomposable Graphs

Q o (x2,x5)

,

p(1,.. ., 26) = %é(xl,xz)¢(xz\{f)s)¢(xz, x(%ii (. :c;)

ey XE) = (:v1|a?2)(w2,$3,$5)p($4|w2,$5)p welws)

s ,332) ¢($ ¢($2,w4,m5) ¢(x5,$6)
L= Z og p(z7|zy logp(x4 |25, z5) + log p(z§ |5)

¢(z1,z2) = €(z1|z2), W(22,73,75) = €(T2,73,25), O(x2,%4,25) = €(x4|x2,25), &(z5,76) = €(z6|T5)




MLE by Guessing

Definition: Graph is decomposable if it can be recursively
subdivided into sets A, B, and S such that S separates A and
B.

Recipe for MLE by Guessing:

— Three conditions:
1. Graphical model is decomposable
2. Potentials defined on maximal cliques
3. Potentials are are parameterized as: Yc(xc) = 0c,zc

— Step 1: set each clique potential to its empirical marginal

— Step 2: divide out every non-empty intersection between cliques
exactly once



Non-decomposable and/or with non-maximal
cligue potentials

e If the graph is non-decomposable, and or the potentials are defined on non-maximal
cliues (e.g., v4o, ws4), We could not equate empirical marginals (or conditionals) to
MLE of cliques potentials.

P(X1, X5, X3, Xy) = HW/J'(XMXJ)
{/".j}

N IBJ(XMX‘L)
A7, j) st w,E.ALE(X,-,XJ.)#P(X/»XJ')/P(X/)
P (X, x;) ] p(X))
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Options for MLE of MRFs

* Setting I wc(wc) — HC,CBC
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

. Setting II: be(xo) = exp(0 - f(zc))

C. Generalized Iterative Scaling
D. Gradient-based Methods



Fixed Point Iteration for Optimization

* Fixed point iteration is a general tool for solving systems of
equations

* |t can also be applied to optimization.

Given objective function:
J(H) Compute derivative, set to
dJ(H) - f(@ zRee;c;lS;:sII this functlo.nf).
— () = ge the equation s.t.
do;

0= f(0)=0;=g(0)
9§t+1) _ g(e(t))

Initialize the parameters.

Foriin{I,...,K}, update each
parameter and increment ¢

Repeat #5 until convergence

P 1

2
/3.

one of parameters appears on

/ the LHS.

4

5
/

6




Fixed Point Iteration for Optimization

Fixed point iteration is a general tool for solving systems of

equat

It can also be applied to optimization.

ions

33 1.
J(x) =5+ gt 2 T
dJ
() = f(zx) =2* — 32+ 2 /////é.
dz — ////
$$+2%
— —
x \gS gg(x) .
r? + 2 5
T <
3
6.

Given objective function:

Compute derivative, set to
zero (call this function 1).

Rearrange the equation s.t.
one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{I,...,K}, update each
parameter and increment ¢

Repeat #5 until convergence
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Fixed Point Iteration for Optimization
A\J’/N%

X

\

py ="

4\ We can implement our

example in a few lines of
python.

def

def

def

x2 4 2
= o =—F— = g(z)
x2 + 92
T <

iI

fF1(x):
TTTE(X) = xXA2 - 3x + 2"
return x**2 - 3.*x + 2.

g1(x):
"'g(x) = \frac{xr2 + 2}{3}"'"’
return (x**2 + 2.) / 3.

fpi(g, %@, n, f):
"""Optimizes the 1D function g by fixed point iteration
starting at x@ and stopping after n iterations. Also

includes an auxiliary function f to test at each value.''’

X = x0
for 1 in range(n):
print("i=%2d x=%.4f fOO=%.4f" % (i, x, fO)))
x = g(x)
1 +=1
print("i=%2d x=%.4f f(xX)=%.4f" % (i, x, f(xX2))
return x

_name__ == "__main__":
x = fpi(aol, ©, 20, f1)
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Fixed Point Iteration for Optimization

$ python
1= 0 x=0.

r—
I
OooNOUVTPAPWNES

X X X X X X X X X X X X X X X X X X X X
00 mowmmowmmmmwmmwmnu

IS ECROS RO RO RO O RO RO RO RO RO RO RO RO RO RO RO RO

fixed-point-iteration.py

0000

.6607
.8148
. 8880
.9295
.9547
.9705
.98006
.9872
.9915
.9944
.9963
.9975
.9983
.9989
.9993
.9995
.9997
.9998
.9999
.9999

f(x)=2.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.

0000
4444
2195
1246
0755
0474
0304
0198
0130
0086
0057
0038
0025
0017
0011
0007
0005
0003
0002
0001
0001



Iterative Proportional Fitting (IPF)
8 £oy) =PV
L =

IPF applies fixed point iteration to the
derivative of the likelihood objective

N T 1. Given likelihood objective

L(D;¢) = Z log p(X™; ¢) > ol 2.  Compute derivative, set to

n=1
: : ///// Zero
Yy 0 L(0) = Z I .)‘ — \'H] l N p(Ve)

Doe(D.) el ) T 6 () 3. Rearrange the equation s.t.
o / one of potentials appears on
€
De(Ve) {0V 55 the LH>. |
P 4. Initialize the potential tables.

For each clique c in C, update
each potential table and
increment ¢:

6. Repeat #5 until convergence
Need to do inference here

PP Ve)= Y py;0W)
YV Yi=Ye



Properties of IPF Updates

e Applies only when potentials are parameterized as:
Yo(xe) = 00,z

o |PF iterates a set of fixed-point equations:

H o0 <yc
e However, we can prove it is also a coordinate~aseert algorithm (coordinates =

parameters of clique potentials).

e Hence at each step, it will increase the log-likelihood, and it will converge to a global
maximum.

© Eric Xing @ CMU, 2005-2015 41



Options for MLE of MRFs

* Setting I: Vo(xe) = 00 2.
A. MLE by inspection (Decomposable Models)

B. lterative Proportional Fitting (IPF)

. Setting II: vo(xo) = exp(0 - f(xzc))
C. Generalized Iterative Scaling //\
D. Gradient-based Methods




Feature-based Clique Potentials O

e So far we have discussed the most general form of an undirected graphical model in
which cliques are parameterized by general “tabular” potential functions w(x,).

e But for large cliques these general potentials are exponentially costly for inference
and have exponential numbers of parameters that we must learn from limited data.

e One solution is to change the graphical model to make cliques smaller. But this
changes the dependencies, and may force us to make more independence
assumptions than we would like.

e Another solution: keep the same graphical model, but use a less general
parameterization of the clique potentials.

e This is the idea behind feature-based models.

© Eric Xing @ CMU, 2005-2015 45
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Features

e Consider a clique x. of random variables in a UGM, e.g. three consecutive
characters ¢,¢,¢; in a string of English text.

e How would we build a model of p(¢;¢,¢3)?
e If we use a single clique function over ¢,¢,¢;, the full joint clique potential would be huge: 263-1 parameters.

e However, we often know that some particular joint settings of the variables in a clique are quite likely or quite
unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

o A “feature”is a functio;ln which is vacuous over all joint settings except a few
particular ones on which it is high or low.

e For example, we might have f£,(¢1¢,¢3) which is 1 if the string is 'ing’ and 0 otherwise, and similar features for
"?ed’, etc.

e We can also define features when the inputs are continuous. Then the idea of a cell
on which it is active disappears, but we might still have a compact parameterization
of the feature.

© Eric Xing @ CMU, 2005-2015 46



Features as Micropotentials

e By exponentiating them, each feature function can be made into a “micropotential”.
We can multiply these micropotentials together to get a clique potential.

e Example: a clique potential y(¢,¢,¢;) could be expressed as:

l//%%a/czalcé) - e@@x ee‘?ed@x e

= €Xp ﬁ((C19C29C3)}
k=1

e This is still a potential over 26° possible settings, but only uses K parameters if

there are K'features.
e By having one indicator function per combination of x., we recover the standard tabular potential.

© Eric Xing @ CMU, 2005-2015 47



E

e Each feature has a weight g, which represents the numerical strength of the feature

and whether it increases or decreases the probability of the clique. 9
e The marginal over the clique is a generalized exponential family distribution, %
actually, a GLM: 8\76
Orelng (G C2rC3) + 084 (61, G2, C) + 1L
p(¢,6,,65) ocexp
qu‘7fu‘7 (Cl ? CZ > C3) + ezzzézz (Cl ’ CZ ’ C3) + e

e Freedom in designing: In general, the features may be overlapping, unconstrained
indicators or any function of any subset of the clique variables:

v.(x,) = eXp{Zﬁkfk(xc, )}

rel,

© Eric Xing @ CMU, 2005-2015 48



Feature Based Model

e \We can multiply these clique potentials as usual:

po)= 55 TTve =5 exp{z Zekfk(xc,)}

c iel,

e However, in general we can forget about associating features with cliques and just
use a simplified form:

1
p(X) - Z(Q) CXP{Z 9/’ﬁ(xc, )}

F

e This is just our friend the exponential family model, with the features as sufficient
statistics!

Learning: recall that in IPF, we h W
e Learning: recall that in we nhave e c )p(w(yc)

e Not obvious how to use this rule to update the weights and features individually !!!

© Eric Xing @ CMU, 2005-2015 49



Options for MLE of MRFs

* Setting I: Vo l(xe) = O 2o
A. MLE by inspection (Decomposable Models)

B. Iterative Proportional Fitting (IPF)

* Setting II: Yo (re) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods



Generalized Iterative Scaling (GIS)

Key idea:
— Define a function which lower-bounds the log-likelihood
— Observe that the bound is tight at current parameters

— Increase lower-bound by fixed-point iteration _ Lme )
in order to increase log-likelihood @

N &

>
i
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Generalized Iterative Scaling (GIS)

GIS applies fixed point iteration to the derivative
of a lower-bound of the likelihood objective

1. Given avg. likelihood objective
2. Derive lower bound
3.

N
L(D;0) = > logp(X";0)
n=1 Compute derivative of bound,

L(D7 (9) ke A(e) Rearrange the equation s.t.

N

ch(‘)(g) —E

Q>
S
2|~

n

set to zero
= ¢
/ one parameter appears on the

fe(Xe)exp | (0c — Oo1a) Z fa(Xa) ] LHS.

Initialize the parameters.

1 . gt 4 160 LN, F(XE) 6. Foreachiin{/,...K}, update
Q ° E[f.(X:)] each parameter and increment
/

[
Repeat #6 until convergence

The lower bound is obtained by linearizing a log and applying Jensen-Shannon.

IOESS {&chm")ec — (peoxp (@c D fa(Xe) > } - 5
c n d p(X’[6otd)

R R



Contrast of IPF and GIS

e |PF is a general algorithm for finding MLE of UGMs.
e a fixed-point equation for i over single cliques, coordinate ascent
e Requires the potential to be fully parameterized
e The clique described by the potentials do not have to be max-clique
e For fully decomposable model, reduces to a single step iteration

e GIS

e lterative scaling on general UGM with feature-based potentials

e |PF is a special case of GIS which the clique potential is built on features defined as an indicator function of
clique configurations.




Options for MLE of MRFs

* Setting I:
5 vo(ze) = o
A. MLE by inspection (Decomposable I\/\oﬁels)
B. lterative Proportional Fitting (IPF)

* Setting Il: ¢C(a3(;) = exp(H . f(wc))
C. Generalized Iterative Scaling
D. Gradient-based Methods



Recipe for Gradient-based Learning

. Write down the objective function

. Compute the partial derivatives of the objective (i.e.
gradient, and maybe Hessian)

. Feed objective function and derivatives into black box

‘ Optimization -

. Retrieve optimal parameters from black box



Optimization Algorithms

What is the black box?
e Newton’s method

* Hessian-free /| Quasi-Newton methods
— Conjugate gradient
— L-BFGS

* Stochastic gradient methods

— Stochastic gradient descent (SGD)

— Stochastic meta-descent
— AdaGrad




Stochastic Gradient Descent

e Suppose we have N training examples s.t. f(x) = Zf\il fi(x).
e This implies that Vf(z) = %

SGD Algorithm:
1. Choose a starting point x.
2. While not converged:
o Choose a step size t.
o Choose ¢ so that it sweeps through the training set.

o Update

75D = g0 49 £;(2)



Whiteboard

* Gradient of MRF log-likelihood for feature-based potentials

* Gradient of CRF log-likelihood for feature-based potentials
[next time]

* L1and L2 regularization



Practical Considerations

for Gradient-based Methods
* Overfitting
— L2 regularization
— L1 regularization
— Regularization by early stopping
* For SGD: Sparse updates



“Empirical” Comparison of Parameter Estimation
Methods

* Example NLP task: CRF dependency parsing

* Suppose: Training time is dominated by inference
* Dataset: One million tokens

* Inference speed: 1,000 tokens / sec

* =>» 0.27 hours per pass through dataset

# passesthrough - _# hours to
data to converge  converge

GIS 1000+ 270
L-BFGS 100+ 27
SGD 10 ~3




Setting I:

Setting II:
Yo (o) = exp(0 - f(xc))

Vo(xe) =00z

A.

B.

Summary

MLE by inspection (Decomposable Models)
—  Very limited applicability
—  Exemplifies the need for general algorithms
Iterative Proportional Fitting (IPF)
—  Guaranteed to converge
—  Only applies to “tabular” potential functions

Generalized Iterative Scaling (GIS)
— Maximizes a lower-bound of log-likelihood

—  Iterative algorithm (like IPF), but more broadly applies to exponential
family potentials

—  When ), . f(X.) = 1 has an advantage
Gradient-based Methods
— Doesn’t require fancy optimization algorithms (i.e. SGD works great)
— Faster convergence than GIS
— Applies to arbitrary potentials [later in the course]



MLE for Undirected GMs
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Contrast of MLE for
directed / undirected GMs

e For directed graphical models, the log-likelihood decomposes into a sum of terms,
one per family (node plus parents).

e For undirected graphical models, the log-likelihood does not decompose, because
the normalization constant Zis a function of all the parameters

P(xla“'a HWc( ) /= z HWc(X )

ceC X, ceC

e In general, we will need to do inference (i.e., margmallzatlon) to learn parameters for
undirected models, even in the fully observed case.
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e

ML Structural Learning via
Neighborhood Selection for

— completely observed
MIRF

© Eric Xing @ CMU, 2005-2015 68



Gaussian Graphical Models

e Multivariate Gaussian density:
1

(272_)/7/2‘2‘1/2

p(x|u.%)= expl 4 (x- ) 2 (x- )

e WOLG: let n=0 Q=x""

1/2
p(x19x2"“’xp | 1=0,0) :(zi_)n/zexp{'ézqz'i(xi)z _Zqijxixj}
l i<j

e We can view this as a continuous Markov Random Field with potentials defined on
every node and edge:

© Eric Xing @ CMU, 2005-2015 69



Pairwise MRF (e.g., Ising Model)

e Assuming the nodes are discrete, and edges are weighted, then for a sample x,, we
have

P(x,4|©) = oxp(ze Td.i+ Z Oijtaita; — A€ ))

eV (i,7)EE
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The covariance and the precision matrices

e Covariance matrix M
Zi,j =0 — XfLJ_X] or p(XZ,X]) — p(Xz)p(X])
e Graphical model interpretation?
e Precision matrix Q=x""1

Qi; =0 = X LX;|X_;; or p(Xy, X;|X ) = p(Xs|X_ij)p(X;|1X_i5)

e Graphical model interpretation?

© Eric Xing @ CMU, 2005-2015 71



Sparse precision vs. sparse covariance in

GGM

O O O o -

OO NMMO

(¥

O oo w N O

O »h 0 O O

010 015 -013 -0.08 0.5

015 -003 002 001 -003
-013 002 010 007 -012
-0.08 001 007 -004 0.07

015 -003 -012 0.07 0.08

o1 o0 O O O
M
Il

21_51 :0 ~ Xl J‘ XS‘anrs(l)ornbrs(S)
it
X 1X. <%, =0

© Eric Xing @ CMU, 2005-2015
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Another example

L2 xr3
(* * k% *O\
* % x x x 0O - T
| = = = 0O 0O O 1 4
Q= x « 0 %« 00
*x x 0 0 x O
\0 0 0 00 x| e O s

e How to estimate this MRF?
e Whatifp>>n

e MLE does not exist in general!

e \What about only learning a “sparse” graphical model?
This is possible when s=o(n)
Very often it is the structure of the GM that is more interesting ...
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Recall lasso

Hﬂ.t-_ = arg 1‘1‘5115(9.;_) + Al O |

where [(6;) = log P(yi|x:.0;).
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Graph Regression

Neighborhood selection O
Lasso:

0 = argmanl )+ A1| 01

75



Graph Regression

O

It can be shown that:

given iid samples, and under several technical conditions (e.g.,
"irrepresentable"), the recovered structured is "sparsistent” even when p

>> N

=~

© Eric Xing @ CMU, 2005-2015
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Learning Ising Model
(i.e. pairwise MRF)

e Assuming the nodes are discrete, and edges are weighted, then for a sample x,, we
have

P(x,4|©) = oxp(ze Td.i+ Z Oijtaita; — A€ ))

eV (i,7)EE

e It can be shown following the same logic that we can use L_1 regularized logistic
regression to obtain a sparse estimate of the neighborhood of each variable in the
discrete case.

© Eric Xing @ CMU, 2005-2015 79



Consistency

e Theorem: for the graphical regression algorithm, under certain verifiable
conditions (omitted here for simplicity):

P [G‘(A”) £ G} — O (exp (=Cn)) = 0

Note the from this theorem one should see that the regularizer is not actually used to introduce an “artificial”
sparsity bias, but a devise to ensure consistency under finite data and high dimension condition.

© Eric Xing @ CMU, 2005-2015 80



