
Learning Fully Observed Undirected
Graphical Models

Kayhan Batmanghelich

1

Slides Credit:
Matt Gormley (2016)

Machine Learning

2

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

MLE for Undirected GMs

3

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)
p(xC) =

X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

2. Model

1. Data

4

D = {x(n)}Nn=1Given training examples:

n n v d n
Sample 2:

time likeflies an arrow

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

2. Model

5

Define the model to be an MRF:

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

`(✓;D) =
NX

n=1

log p(x(n) | ✓)

3. Objective
Choose the objective to be log-likelihood:
(Assign high probability
to the things we observe
and low probability to
everything else)

4. Learning

6

Tune the parameters to maximize the objective
function

✓⇤ = argmax
✓

`(✓;D)

3. Objective
Choose the objective to be log-likelihood:

`(✓;D) =
NX

n=1

log p(x(n) | ✓)
(Assign high probability
to the things we observe
and low probability to
everything else)

4. Learning

7

Tune the parameters to maximize the objective
function

✓⇤ = argmax
✓

`(✓;D)

3. Objective
Choose the objective to be log-likelihood:

`(✓;D) =
NX

n=1

log p(x(n) | ✓)
(Assign high probability
to the things we observe
and low probability to
everything else)

Goals for Today’s Lecture

1. Optimize this objective
function

2. Characterize the applicability
of different optimizers

8

p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

x̂ = argmax
x

p(x | ✓)

1. Marginal Inference
Compute marginals of variables and cliques

2. Partition Function
Compute the normalization constant

3. MAP Inference
Compute variable assignment with highest probability

p(xi) =
X

x0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference

MLE for Undirected GMs

9

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)
p(xC) =

X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

MLE for Undirected GMs

• Today’s parameter estimation assumptions:
1. The graphical model structure is given
2. Every variable appears in the training examples

10

Questions

1. What does the likelihood objective accomplish?
2. Is likelihood the right objective function?
3. How do we optimize the objective function (i.e. learn)?
4. What guarantees does the optimizer provide?
5. (What is the mapping from data à model? In what ways

can we incorporate our domain knowledge? How does this
impact learning?)

11

Options for MLE of MRFs

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

12

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

Today’s Lecture

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

13

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

Options for MLE of MRFs

14

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

Options for MLE of MRFs

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

15

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

Options for MLE of MRFs

16

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

Options for MLE of MRFs

17

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

Whiteboard

• Derivative of log-likelihood with respect to potentials

18

Discrete Variables (Tabular clique Potentials)

• Remember categorical distribution

19

p(x = t) /
Y

k

✓I(x=t)
k

�(Yc)

• Tabular clique potentials look like:

Observed values Lookup table

• Log likelihood function:
L(�) =

X

n

X

c

X

Yc

I[Yc = Xn
c] log �c(Yc)�N logZ(�)

Param Value for !"

Whiteboard

• Derivative of log-likelihood for the tabular clique potentials

20

Z(�) =
X

Yc

Y

c

�c(Yc)L(�) =
X

n

X

c

X

Yc

I[Yc = Xn
c] log �c(Yc)�N logZ(�)

21

Conditions on Clique Marginals
• Derivative of log-likelihood

• Hence, for the maximum likelihood parameters, we know that:

• In other words, at the maximum likelihood setting of the parameters,
for each clique, the model marginals must be equal to the observed
marginals (empirical counts).

• This doesn’t tell us how to get the ML parameters, it just gives us a
condition that must be satisfied when we have them.

Options for MLE of MRFs

• Setting I:
A. MLE by inspection (Decomposable Models) – easy cases
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

26

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

Decomposable Graphs

28

Decomposable Graphs

29

Remember this
from Lectures 6

Decomposable Graphs

30

Remember this
from Lectures 6

• Definition: Graph is decomposable if it can be recursively
subdivided into sets A, B, and S such that S separates A and
B.

Decomposable Graphs

31

MLE by Guessing

• Definition: Graph is decomposable if it can be recursively
subdivided into sets A, B, and S such that S separates A and
B.

• Recipe for MLE by Guessing:
– Three conditions:

1. Graphical model is decomposable
2. Potentials defined on maximal cliques
3. Potentials are are parameterized as:

– Step 1: set each clique potential to its empirical marginal
– Step 2: divide out every non-empty intersection between cliques

exactly once

33

 C(xC) = ✓C,xC

Non-decomposable and/or with non-maximal
clique potentials

l If the graph is non-decomposable, and or the potentials are defined on non-maximal
cliques (e.g., y12, y34), we could not equate empirical marginals (or conditionals) to
MLE of cliques potentials.

X1

X4X3

X2 Õ=
},{

),(),,,(
ji

jiij xxxxxxp y4321

ï
î

ï
í

ì
¹$

)(~/),(~
)(~/),(~

),(~

),(s.t.),(MLE

jji

iji

ji

jiij

xpxxp
xpxxp

xxp
xxji y

34© Eric Xing @ CMU, 2005-2015

Options for MLE of MRFs

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

35

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of

equations
• It can also be applied to optimization.

36

1. Given objective function:
2. Compute derivative, set to

zero (call this function f).
3. Rearrange the equation s.t.

one of parameters appears on
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓)) ✓i = g(✓)

✓(t+1)
i = g(✓(t))

Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of

equations
• It can also be applied to optimization.

37

1. Given objective function:
2. Compute derivative, set to

zero (call this function f).
3. Rearrange the equation s.t.

one of parameters appears on
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

Fixed Point Iteration for Optimization

38

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

We can implement our
example in a few lines of
python.

Fixed Point Iteration for Optimization

39

$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

Iterative Proportional Fitting (IPF)

IPF applies fixed point iteration to the
derivative of the likelihood objective

40

1. Given likelihood objective
2. Compute derivative, set to

zero
3. Rearrange the equation s.t.

one of potentials appears on
the LHS.

4. Initialize the potential tables.
5. For each clique c in C, update

each potential table and
increment t:

6. Repeat #5 until convergence
Need to do inference here

�c(Yc) = �c(Yc)
✏(Yc)

p(Yc)

�(t+1)
c (Yc) �(t)

c (Yc)
✏(Yc)

p(t)(Yc)

L(D;�) =
NX

n=1

log p(Xn;�)

p(t)(Yc) =
X

Y0:Y0
c=Yc

p(Y 0; ✓(t))

Properties of IPF Updates
l Applies only when potentials are parameterized as:

l IPF iterates a set of fixed-point equations:

l However, we can prove it is also a coordinate ascent algorithm (coordinates =
parameters of clique potentials).

l Hence at each step, it will increase the log-likelihood, and it will converge to a global
maximum.

41© Eric Xing @ CMU, 2005-2015

 C(xC) = ✓C,xC

�(t+1)
c (Yc) �(t)

c (Yc)
✏(Yc)

p(t)(Yc)

Options for MLE of MRFs

44

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

Feature-based Clique Potentials
l So far we have discussed the most general form of an undirected graphical model in

which cliques are parameterized by general “tabular” potential functions yc(xc).
l But for large cliques these general potentials are exponentially costly for inference

and have exponential numbers of parameters that we must learn from limited data.
l One solution is to change the graphical model to make cliques smaller. But this

changes the dependencies, and may force us to make more independence
assumptions than we would like.

l Another solution: keep the same graphical model, but use a less general
parameterization of the clique potentials.

l This is the idea behind feature-based models.

45© Eric Xing @ CMU, 2005-2015

Features
l Consider a clique xc of random variables in a UGM, e.g. three consecutive

characters c1c2c3 in a string of English text.

l How would we build a model of p(c1c2c3)?
l If we use a single clique function over c1c2c3, the full joint clique potential would be huge: 263−1 parameters.

l However, we often know that some particular joint settings of the variables in a clique are quite likely or quite
unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

l A “feature” is a function which is vacuous over all joint settings except a few
particular ones on which it is high or low.
l For example, we might have fing(c1c2c3) which is 1 if the string is ’ing’ and 0 otherwise, and similar features for

’?ed’, etc.

l We can also define features when the inputs are continuous. Then the idea of a cell
on which it is active disappears, but we might still have a compact parameterization
of the feature.

46© Eric Xing @ CMU, 2005-2015

Features as Micropotentials
l By exponentiating them, each feature function can be made into a “micropotential”.

We can multiply these micropotentials together to get a clique potential.
l Example: a clique potential y(c1c2c3) could be expressed as:

l This is still a potential over 263 possible settings, but only uses K parameters if
there are K features.
l By having one indicator function per combination of xc, we recover the standard tabular potential.

þ
ý
ü

î
í
ì=

´´=

å
=

K

k
kk

ff
c

cccf

eeccc

1
321

321

),,(exp

),,(?ed?edinging

q

y qq !

47© Eric Xing @ CMU, 2005-2015

Combining Features
l Each feature has a weight qk which represents the numerical strength of the feature

and whether it increases or decreases the probability of the clique.
l The marginal over the clique is a generalized exponential family distribution,

actually, a GLM:

l Freedom in designing: In general, the features may be overlapping, unconstrained
indicators or any function of any subset of the clique variables:

ïþ

ï
ý
ü

ïî

ï
í
ì

++

++
µ

!),,(),,(

),,(),,(
exp),,(

zzzzzzqu?qu?

?ed?edinging

321321

321321
321 cccfcccf

cccfcccf
cccp

qq
qq

þ
ý
ü

î
í
ì

= å
Î c

i
Ii

ckkcc f)(exp)(
def

xx qy

48© Eric Xing @ CMU, 2005-2015

Feature Based Model
l We can multiply these clique potentials as usual:

l However, in general we can forget about associating features with cliques and just
use a simplified form:

l This is just our friend the exponential family model, with the features as sufficient
statistics!

l Learning: recall that in IPF, we have

l Not obvious how to use this rule to update the weights and features individually !!!

þ
ý
ü

î
í
ì

== ååÕ
Îc Ii

ckk
c

cc
c

i
f

ZZ
p)(exp

)(
)(

)(
)(xxx q

q
y

q
11

þ
ý
ü

î
í
ì= å

i
cii i

f
Z

p)(exp
)(

)(xx q
q
1

49© Eric Xing @ CMU, 2005-2015

�(t+1)
c (Yc) �(t)

c (Yc)
✏(Yc)

p(t)(Yc)

Options for MLE of MRFs

50

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)

B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling

D. Gradient-based Methods

Generalized Iterative Scaling (GIS)

Key idea:
– Define a function which lower-bounds the log-likelihood
– Observe that the bound is tight at current parameters
– Increase lower-bound by fixed-point iteration

in order to increase log-likelihood

51

Side note: This idea is akin to a standard
derivation of the Expectation-Maximization
(EM) algorithm

Generalized Iterative Scaling (GIS)

GIS applies fixed point iteration to the derivative
of a lower-bound of the likelihood objective

52

1. Given avg. likelihood objective
2. Derive lower bound
3. Compute derivative of bound,

set to zero
4. Rearrange the equation s.t.

one parameter appears on the
LHS.

5. Initialize the parameters.
6. For each i in {1,…K}, update

each parameter and increment
t:

7. Repeat #6 until convergence
The lower bound is obtained by linearizing a log and applying Jensen-Shannon.

L(D; ✓) =
NX

n=1

log p(Xn; ✓)

L(D; ✓) � ⇤(✓)
@⇤(✓c)

@✓c
=

1

N

X

n

fc(Xn
n)� E

"
fc(Xc) exp

(✓c � ✓old)

X

d

fd(Xd)

!#

Contrast of IPF and GIS
l IPF is a general algorithm for finding MLE of UGMs.

l a fixed-point equation for yc over single cliques, coordinate ascent
l Requires the potential to be fully parameterized

l The clique described by the potentials do not have to be max-clique
l For fully decomposable model, reduces to a single step iteration

l GIS
l Iterative scaling on general UGM with feature-based potentials
l IPF is a special case of GIS which the clique potential is built on features defined as an indicator function of

clique configurations.

IPF:GIS:

56© Eric Xing @ CMU, 2005-2015

�(t+1)
c (Yc) �(t)

c (Yc)
✏(Yc)

p(t)(Yc)

Options for MLE of MRFs

57

 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

• Setting I:
A. MLE by inspection (Decomposable Models)

B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling

D. Gradient-based Methods

Recipe for Gradient-based Learning

1. Write down the objective function

2. Compute the partial derivatives of the objective (i.e.
gradient, and maybe Hessian)

3. Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

58

Optimization

Optimization Algorithms

What is the black box?
• Newton’s method
• Hessian-free / Quasi-Newton methods
– Conjugate gradient

– L-BFGS

• Stochastic gradient methods
– Stochastic gradient descent (SGD)

– Stochastic meta-descent
– AdaGrad

59

Optimization

Stochastic Gradient Descent

60

• Gradient Descent:

~x(k+1) = ~x(k) + tOf(~x) = ~x(k) + t
NX

i=1

Ofi(x)

• SGD Algorithm:
1. Choose a starting point x.
2. While not converged:

� Choose a step size t.
� Choose i so that it sweeps through the training set.
� Update

~x(k+1) = ~x(k) + tOfi(~x)

• For CRF training Stochastic Meta Descent is even better (Vishwanathan, 2006).

2.2 Additional readings

• PGM Appendix A.5: Continuous Optimization
• Boyd & Vandenberghe “Convex Optimization” http://www.stanford.edu/b̃oyd/cvxbook/

� Chapter 9: Unconstrained Minimization
⌅ 9.3 Gradient Descent
⌅ 9.4 Steepest Descent
⌅ 9.5 Newton’s Method

• Intuitive explanation of Lagrange Multipliers (without the assumption of differentiability):
http://www.umiacs.umd.edu/r̃esnik/ling848_fa2004/lagrange.html

2.3 Advanced readings

• “Overview of Quasi-Newton optimization methods” http://homes.cs.washington.edu/g̃alen/files/quasi-
newton-notes.pdf

• Shewchuk (1994) “An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain” http://www.cs.cmu.edu/q̃uake-papers/painless-conjugate-gradient.pdf

• Conjugate Gradient Method: http://www.cs.iastate.edu/c̃s577/handouts/conjugate-gradient.pdf

3 Third Review Session

3.1 Continuous Optimization (constrained)

3.1.1 Running example: MLE of a Multinomial

• Recall the pdf of the Categorical distribution:
� support: X 2 {0, . . . , k}
� pmf: p(X = k) = ✓k

• Let Xi ⇠ Categorical(~✓) for 1  i  N .
• The likelihood of all these is:

QN
i=1 ✓Xi =

Qk
l=1 ✓

Nl
l where Nl is the number of Xi = l.

• The log-likelihood is then: LL(~✓) =
Pk

l=1Nl log(✓l)

• Suppose we want to find the maximum likelihood parameters: ~✓MLE = argmin~✓ LL(
~✓) subject

to the constraints
Pk

l=1 ✓l = 1 and 0  ✓l8l.

7

2.1.5 Newton-Raphson (Newton’s method, a second-order method)

• From our introductory example, we know that we can find the solution to a quadratic function
analytically. Yet gradient descent may take many steps to converge to that optimum. The
motivation behind Newton’s method is to use a quadratic approximation of our function to
make a good guess where we should step next.

• Definition: the Hessian of an n-dimensional function is the matrix of partial second derivatives
with respect to each pair of dimensions.

O
2f(~x) =

2

664

d2f(~x)
dx2

1

d2f(~x)
dx1dx2

...
d2f(~x)
dx2dx1

d2f(~x)
dx2

2

... ...

3

775

• Consider the secord order Taylor series expansion of f at x.

ĝ(v) = f̂(x+ v) = f(x) + Of(x)T v +
1

2
vTO2f(x)v

• We want to find the v that maximizes ĝ(v). This maximizer is called Newton’s step. Oxnt =
argmaxv ĝ(v).

• Algorithm:
1. Choose a starting point x.
2. While not converged:

� Compute Newton’s step Oxnt = (O2f(x))�1
Of(x)

� Update x(k+1) = x(k) + Oxnt
• Intuition:

� If f(x) is quadratic, x+ Oxnt exactly maximizes f .
� ĝ(v) is a good quadratic approximation to the function f near the point x. So if f(x) is

locally quadratic, then f(x) is locally well approximated by ĝ(v).
� See Figure 9.17 in Boyd and Vandenberghe.

• In most presentations, Newton-Raphson would be presented a minimization algorithm, for
which we would negate the definition of Newton’s step from above.

2.1.6 Quasi-Newton methods (L-BFGS)

• What if we have n = millions of features?
• The Hessian matrix H = O

2f(x) is too large: n2 entries.
• quasi-Newton methods approximate the Hessian.
• Limited memory BFGS stores only a history of the last k updates to ~x and Of(~x). k is usually

small (e.g. k = 10).
• This history is used to approximate the Hessian-vector product.
• Optimization has nearly become a technology. Almost every language has many generic

optimization routines built in that you can use out of the box.

2.1.7 Stochastic Gradient Descent

• Suppose we have N training examples s.t. f(x) =
PN

i=1 fi(x).
• This implies that Of(x) =

PN
i=1Ofi(x).

6

Whiteboard

• Gradient of MRF log-likelihood for feature-based potentials
• Gradient of CRF log-likelihood for feature-based potentials

[next time]
• L1 and L2 regularization

61

Practical Considerations
for Gradient-based Methods

• Overfitting
– L2 regularization
– L1 regularization
– Regularization by early stopping

• For SGD: Sparse updates

62

“Empirical” Comparison of Parameter Estimation

Methods

63

• Example NLP task: CRF dependency parsing

• Suppose: Training time is dominated by inference

• Dataset: One million tokens

• Inference speed: 1,000 tokens / sec

• è 0.27 hours per pass through dataset

passes through
data to converge

hours to
converge

GIS 1000+ 270

L-BFGS 100+ 27

SGD 10 ~3

Summary
A. MLE by inspection (Decomposable Models)

– Very limited applicability
– Exemplifies the need for general algorithms

B. Iterative Proportional Fitting (IPF)
– Guaranteed to converge
– Only applies to “tabular” potential functions

A. Generalized Iterative Scaling (GIS)
– Maximizes a lower-bound of log-likelihood
– Iterative algorithm (like IPF), but more broadly applies to exponential

family potentials
– When ∑ " #$ = 1$ has an advantage

B. Gradient-based Methods
– Doesn’t require fancy optimization algorithms (i.e. SGD works great)
– Faster convergence than GIS
– Applies to arbitrary potentials [later in the course]

64

C
(x

C
)
=
✓ C

,x
C

C
(x

C
)
=

ex
p
(✓

·f
(x

C
))

Se
tt

in
g

I:
Se

tt
in

g
II:

MLE for Undirected GMs

65

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)
p(xC) =

X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

Contrast of MLE for
directed / undirected GMs

l For directed graphical models, the log-likelihood decomposes into a sum of terms,
one per family (node plus parents).

l For undirected graphical models, the log-likelihood does not decompose, because
the normalization constant Z is a function of all the parameters

l In general, we will need to do inference (i.e., marginalization) to learn parameters for
undirected models, even in the fully observed case.

Õ
Î

=
Cc

ccn Z
xxP)(),,(xy1

1 ! å Õ
Î

=
nxx Cc

ccZ
,,

)(
!1

xy

66© Eric Xing @ CMU, 2005-2015

67

p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

x̂ = argmax
x

p(x | ✓)

1. Marginal Inference
Compute marginals of variables and cliques

2. Partition Function
Compute the normalization constant

3. MAP Inference
Compute variable assignment with highest probability

p(xi) =
X

x0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference Next time:

How to compute these!

ML Structural Learning via
Neighborhood Selection for

completely observed
MRF Data

),,()()(11
1 nxx !

),,()()(M
n

M xx !1

!
),,()()(22

1 nxx !

68© Eric Xing @ CMU, 2005-2015

Gaussian Graphical Models
l Multivariate Gaussian density:

l WOLG: let

l We can view this as a continuous Markov Random Field with potentials defined on
every node and edge:

{ })-()-(-exp
)(

),|(//
µµ

p
µ xxx 1

2
1

2122
1 -S
S

=S T
n

p

()
þ
ý
ü

î
í
ì

-== åå
<

ji
ji

ij
i

iiinp xxqxq
Q

Qxxxp 2
2
1

2/

2/1

21 -exp
)2(

),0|,,,(
p

µ!

69© Eric Xing @ CMU, 2005-2015

Pairwise MRF (e.g., Ising Model)
l Assuming the nodes are discrete, and edges are weighted, then for a sample xd, we

have

70© Eric Xing @ CMU, 2005-2015

The covariance and the precision matrices
l Covariance matrix

l Graphical model interpretation?

l Precision matrix

l Graphical model interpretation?

71© Eric Xing @ CMU, 2005-2015

Sparse precision vs. sparse covariance in
GGM

21 3 54

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

=S-

59000
94800
08370
00726
00061

1

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

--
--

--
--

--

=S

080070120030150
070040070010080
120070100020130
030010020030150
150080130150100

.....

.....
.....
.....
.....

)5(or)1(51
1

15 0 nbrsnbrsXXX ^Û=S-

01551 =SÛ^ XX

Þ

72© Eric Xing @ CMU, 2005-2015

Another example

l How to estimate this MRF?
l What if p >> n

l MLE does not exist in general!
l What about only learning a “sparse” graphical model?

l This is possible when s=o(n)
l Very often it is the structure of the GM that is more interesting …

73© Eric Xing @ CMU, 2005-2015

Recall lasso

74© Eric Xing @ CMU, 2005-2015

Graph Regression

75

Neighborhood selection
Lasso:

Graph Regression

It can be shown that:
given iid samples, and under several technical conditions (e.g.,
"irrepresentable"), the recovered structured is "sparsistent" even when p
>> n

78© Eric Xing @ CMU, 2005-2015

Learning Ising Model
(i.e. pairwise MRF)

l Assuming the nodes are discrete, and edges are weighted, then for a sample xd, we
have

l It can be shown following the same logic that we can use L_1 regularized logistic
regression to obtain a sparse estimate of the neighborhood of each variable in the
discrete case.

79© Eric Xing @ CMU, 2005-2015

Consistency
l Theorem: for the graphical regression algorithm, under certain verifiable

conditions (omitted here for simplicity):

Note the from this theorem one should see that the regularizer is not actually used to introduce an “artificial”
sparsity bias, but a devise to ensure consistency under finite data and high dimension condition.

80© Eric Xing @ CMU, 2005-2015

