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Recall: Learning Graphical Models

e Scenarios:

* completely observed GMs
* directed
e undirected

* partially or unobserved GMs
e directed
* undirected (an open research topic)
e Estimation principles:
» Maximal likelihood estimation (MLE)
* Bayesian estimation
* Maximal conditional likelihood
* Maximal "Margin"
* Maximum entropy

. \éVe use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from
ata.
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Recall: Approaches to inference

* Exact inference algorithms

* The elimination algorithm
* Message-passing algorithm (sum-product, belief propagation)
* The junction tree algorithms

* Approximate inference techniques

 Stochastic simulation / sampling methods
* Markov chain Monte Carlo methods
 Variational algorithms



Partially observed GMs

* Speech recognition

oocepe: a xiogle word
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Partially observed GM

* Biological Evolution

ancestor

T years
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Mixture Models
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Mixture Models, con'c
* A density model p(x) may be multi-modal.

* We may be able to model it as a mixture of uni-modal distributions
(e.g., Gaussians).

* Each mode may correspond to a different sub-population (e.g., male
and female).
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Unobserved Variables

* A variable can be unobserved (latent) because:

* itis an imaginary quantity meant to provide some simplified and abstractive view of
the data generation process

* e.g., speech recognition models, mixture models ...
* itis a real-world object and/or phenomena, but difficult or impossible to measure
* e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

* itis a noisy measurement of the a real-world object (i.e. the true value is
unobserved).

* Example: Discrete latent variables can be used to partition/cluster data into
sub-groups.

* Example: Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc).
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|u,2) = Zk TN (| 1y, 2))
z | S

mixture proportion mixture component

X

* This model can be used for unsupervised clustering.

. 'clj'his model (fit by AutoClass) has been used to discover new kinds of stars in astronomical
ata, etc.
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Gaussian Mixture Models (GMMs)

* Consider a mixture of K Gaussian components:

e Zis alatent class indicator vector:

p(zn) = Cat(zn;7m) = H(ﬂ-k)ﬂ(zn:k)

» Xis a conditional Gaussian variable with a class-specific mean/covariance

1 1
T l2n = k; ;D K )= — ex [—— Ty — Iy =Yg, —
p(n| {kr B Fre=1) 2 dermt 5 (Zn = pe) " 2y (20 — p)

* The likelihood of a sample:

p(zn[{ ok, Ek}?:l) = Zp(zn = k;m)p(wnlzn = k; { Zk}?:l)

[ [Gm) =N (s pan, )
k

mixture proportion

= meﬂkazk)
N ———

mixture component
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Why is Learning Harder?

* In fully observed iid settings, the log likelihood decomposes into a
sum of local terms (at least for directed models).

(.(0;D) = log p(x,z|0) = log p(z|6.) +log p(x| 2,6,)

* With latent variables, all the parameters become coupled together via

marginalization

¢.(0;D) =210g2p(x,Z 16)=log ) p(z| 92)5(?6 2,0,)

@
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Toward the EM algorithm

Let’s pretend it is

e Recall MLE for completely observed data observed ==,

e Data log-likelihood

¢ (OﬂD) - IOng(Zn?xn) :log]i:p(zn |7Z-)p(xn |Zn,/,l,o-\

\.

N

= ZlogHﬂk + Zlogr N(Xn;,uk,G)Zﬁ Let’s assume o is known

_Zzzn logﬂ-k Zzzn 2(xn_luk)2+c
e Separate MLE
Ty yup = argmax ¢ (0; D),

Zn Zntn

,[lk,MLE =argmax ¢ (0;D) = i, MLE = Z p

e What if we do not know z,?
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Question

e “ ... We solve problem X using Expectation-Maximization ...”
 What does it mean?

e E
* What do we take expectation with?
 What do we take expectation over?

e M
 What do we maximize?
* What do we maximize with respect to?
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Recall: K-means

z,) =argmax(x, — ") 2 (x, — 1)
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Expectation-Maximization

* Start:
* "Guess" the centroid 14 and coveriance 2, of each of the K clusters
* Loop . L =1 L=4
IO AR ﬂ ¥
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Example: Gaussian mixture model

N
* A mixture of K Gaussians:

» Zis a latent class indicator vector ; ); f‘)'

p(zn) = Cat(zn;m) = | [ (mp) "
* Xis a conditional Gaussian variable with class-specific mean/covariance \ N
1
k _ _ 1 _ T y-1 _
p(Xn |Zn —1, IU,Z) - (272')”7/2|Zk|1/2 exp{' 2 (Xn :uk) 2k (Xn :uk)}
* The likelihood of a sample: 0

px,|u.2) =3, p(z“ =1m)p(x,| z* =1, 1,%)
= Zz,, Hk ((”k)zﬂk N(x,: ﬂkaZk)z"k N Zkﬂ-kN(Xa‘ Hi>2g)

* The expected complete log likelihood

(6. 8:%,2)) = (log p(z, | 7))+ (log p(x, |2, 14, 5))

n n

p(z|x)

=" (zi)logx, —1ZZ<zf;>(<xn — 1) (x, — 1) +loglE, |+ C)
n k 2 n k
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E-step

* We maximize (/. (0)) iteratively using the following iterative procedure:

—Expectation step: computing the expected value of the sufficient statistics of
the hidden variables (i.e., 2) given current est. of the parameters (i.e., zand

H).

p(x; i, 30" (2

0= (zy) 1], 0,50 N (x| ", 2
7 o =0z, =1]x,u )=
( A Zﬂ(”N (%, 44", 2

Like soft count

* Here we are essentially doing inference
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M-step

* We maximize</c (O)>iterative|y using the following iterative procedure:

—Maximization ste]p: compute the parameters under current results of the
expected value ot the hidden variables

7, =argmax(/ (0)), = = (.(8))=0,Vk, s.t. > =1
k
PIRCAPDDS n" )
k . n n t . » n o k
ShT N T N = 4
w, =argmax(l(0)), = = Z” i k(:” Fact:
Zn b 810g|A’1|
Z_k([)(x _ILI(H-I))(X _ILI(H—I))T 8A_1 =A"
5 —argmax(i@), = -2l S BN

n I XX

oA
* This is isomorphic to MLE except that the variables that are hidden are replaced

by their expectations (in general they will by replaced by their corresponding
"sufficient statistics")
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Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "soft version" of

the K-means algorithm.

e K-means

In the K-means “E-step” we do hard assignment:

(0 —

n

-1
z,” =argmax(x, - 4) I (x, - 1"

In the K-means “M-step” we update the means as the

weighted sum of the data, but now the weights are O or 1:

:u(“rl) — Zn 5(21'(:) ’ k)xn
D IR (ERNS
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* E-step

k(t) _ k
Z-n - <Zn >q<x)

ﬂ/ftt)N(xn 2 ‘ lul((l) 2 25;))

o k _ () ()Y —
_p(Zn _l‘x”u ’2 )_ Zyz'(t)N(x ,‘Iu(t),z(t))

* M-step

k(1)
ILI(HI) _ Zn Tn xn
ko k(1)
Zn T”

2005-2015
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Theory underlying EM

* What are we doing?

* Recall that according to MLE, we intend to learn the model parameter that

would have maximize the likelihood of the data.

* But we do not observe z, so computing
¢,(0;D) =log ) p(x,z|60)=log Y p(z]6.)p(x]|z06,)

is difficult!

e What shall we do?

© Eric Xing @ CMU, 2005-2015
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Com

* Comp

nlete & Incomplete Log Likelihoods

ete log likelihood

Let X'denote the observable variable(s), and Zdenote the latent variable(s).

If Zcould be observed, then

def

(.(0;x,z) =log p(x,z|0)

* Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor
can be estimated separately (c.f. MLE for fully observed models).

* But given that £ is not observed, /() is a random quantity, cannot be maximized directly.

* Incomplete log likelihood

With

Zunobserved, our objective becomes the log of a marginal probability:

* This objective won't decouple

¢.(0;x)=log p(x|0)=log) p(x,z|6)
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Expected Complete Log Likelihood

* For any distribution ¢(2), define expected complete log likelihood:

def

(¢.(0;x,2)) =D g(z|x,0)log p(x,2|6)

e A deterministic function of &
* Linear in /() --- inherit its factorability
* Does maximizing this surrogate yield a maximizer of the likelihood?

* Jensen’s inequality

¢ (0;x)=log p(x|0)
=log) p(x.z10)

- p(x,z|0) /
=1
(x,21]0) VN !
> gc/(z | x)log? /1) = ((0;x)= 5§_ff_(_?§ X f_)_>_qj+i A,

© Eric Xing @ CMU, 2005-2015
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Lower Bounds and Free Energy

* For fixed data x, define a functional called the free energy:

def p(X,Z | H)

F(g,0) = §q<z|x>log 710 <t (0;x)

* The EM algorithm is coordinate-ascent on F:
* E-step: g =argmax F(q,0")
q

* M-step: 0" = arg max F(q”l,ﬁf)

© Eric Xing @ CMU, 2005-2015
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E-step: maximization of expected /. w.r.t. g

* Claim: q”l:argm?XF(q,ﬁf):p(ﬂX,@")

* The best solution is the posterior over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform classification).

* Proof (easy): this setting attains the bound /(8 X)>F{g,6)

p(x,z|0")
p(z\x.0")

=Y g(z|x)log p(x|6")

=logp(x[0")=¢(6";x)
* Can also show this result using variational calculus or the fact that
¢ (0;x)-F(g,0)=KL(g| p(z | x,0))

© Eric Xing @ CMU, 2005-2015
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E-step = plug in posterior expectation of
latent variables

* Without loss of generality: assume that p(x; z| 6) is a generalized

exponential family distribution: 1
p(x,2|0)= %h(x,Z)eXp{Z 9,-75()(,2)}
* Special cases: if p(X]Z) are GLMs, then 7 (x.2)=7] (2)&(x)

* The expected complete log likelihood under¢”™ = p(z|x.0") is
(c(0"x.2)) .. =D q(z]x,0")log p(x.2|6")~ A(®)
= Z 0; <7§(X, Z)>q(zx,9"> —A0)

p~GLIM

= 20012, 0 E(X) ~AO)

/
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M-step: maximization of expected /. w.r.t. &

* Note that the free energy breaks into two terms:

F ,(9 — | ,D(X,Z|¢9)
(¢.0) gcﬂz\x) o8 T

=Y g(z | X)log p(x,2|0)- > g(z| x)logg(z| X)

—— - ——————

* Thus, in the M-step, maximizir_\_g_> with respect to @for fixed gwe only need
to consider the first term:

0" = arg meax<éc(¢9; X,Z)) s =arg max Z g(z | x)log p(x,z|6)

* Under optimal q""-’, this is e?uivalent to solving a standard MLE of fully observed
model p(X,er), with the sufficient statistics involving Zreplaced by their
expectations w.r.t. p(z| x,6).

© Eric Xing @ CMU, 2005-2015
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Example: HMM

* Supervised learning: estimation when the “right answer” is known
* Examples:

GIVEN: agenomic regionx = X1..-X1 000,000 Where we have good (experimental)
annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes
dice and produces 10,000 rolls

* Unsupervised learning: estimation when the “right answer” is unknown
* Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands
there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

* QUESTION: Update the parameters @of the model to maximize A x| &) --- Maximal likelihood (ML)
estimation
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Hidden Markov Model:

from static to dynamic mixture models

V2

Static mixture

Dynamic mixture

|

Y
29

K |
The underlying
source:
Speech signal,
dice,
The sequence:
Phonemes,
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The Baum Welch algorithm

* The complete Iog likelihood

le(x,y;0) =logp(x,y; 0 logH ( Hp(y?l
=2

()—()—(")~-
i) [ [ (e Iyt> () (o) () .

<€C(X7Y79>> — Z (/1 1()57 +ZZ/7 I/, y; l l()o _1_22

n

'\

T = ply1 = 1)
Pyt = Jlyt—1 = 1) = {(111} = A

n t

> 6 = (A, B, m) are the
parameters of the model

bi(z) = p(xe = 2|yt = J)
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The Baum Welch algorithm

* The complete Iog likelihood OaOnOR0
T
le(x,y;0) =logp(x,y; 0 logH ( Hp(y?ly?_l) HM%?I@/?)) @ @ @ e

(e, 1)) = 3 (W) o)+ 32 3 (i) o )+ 303 () s
n n 2

m; = p(yr = 1) * Fix 6 and compute the marginal posterior:
. . * p(ye = i|x;0),
p(ye = jlye—r = 1) ={ay} =A< pl =iy,. =) |%:0)

| e Update 8 by MLE (closed-form) — remember
bi(z) = p(xe = 2|yt = J) the soft count
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Extension to general BN



EM for general BNs

= Hp($i|Pa (i))- x represents both hidden and observed: =™ = (v", h")
N V:{vl,...,vN}

N
logp(VI0) > L({q},0) = = > (log q(h"[v™)) yuniyny + > (0g p(R"™,0"10)) g jnjomy
n=1

n=1

eni?rgpy ellz:gy
/. n "
DTG 50 SL AT
n )
A bit of notation: q; () = q(h"[v")d(v,v"™)

N

|
@) = =3 @@

N (log p(2)) g,y = N > _ [log p()] % > (" v™)s(v,0™) =) (log p(x™)) g, (hnjum)

n

See section 11.2.4 of David Barber’s book .



EM for general BNs

= HP(CUi|Pa (i))- x represents both hidden and observed: =" = (v", h")
N Vz{vl,...,vN}

N
logp(VI0) > L({q},0) = = > (log q(h"[v™)) yuniyny + > (0g p(R"™,0"10)) g jnjomy
n=1

n=1

: e11;rgpy i en?t?gy ’ y
[ l
N <10gp(33)>q,(x)
K L(q(x;|pa(x;))||p(x;|palx;)) |
Z <<l0g p(fl;z|p'd (x'l.))>(1t((lfj|pa(w‘i)) >(1t (pa(:l:,j))

D~ (108 a1(ilpa (20)))g, 1, pacen)) — 108 P(ilPA (20)))g 01 paer)) )
See section 11.2.4 of David Barber’s book

qt(pa(x;))



EM for general BNs

p(x) = Hp(fﬂih)a (xi))- x represents both hidden and observed: =™ = (v", h")
; . N
Lot —1 V—{vl,...,v }
2: Set py (zi|pa (x;)) to initial values. K L(qi(xz;|pa(x;))||p(x;:|palx;))

3: while p (x;|pa (x;)) not converged (or likelihood not converged)
4: t—t+1

5: forn=1to N do p"“(xilpa(z;)) = qi(xi|pa (x;))
6: q¢' (x) = py (h"[v™) 0(v, v™)
7. end for PP (1 10a (1)) = >_n 4t (i, pa(z;))
> for Z B 1 0 K do Z'\' (1"(-1‘,‘.1)&1((1'1')) a - Zn’ (1/”,(»1)21 (1'))
0: prr1(zi|pa (x;)) = =25

SN @ (pa(z;))
10: end for

11: end while
12: return p;(x;|pa (z;))

See section 11.2.4 of David Barber’s book >



Summary: EM Algorithm

A way of maximizing likelihood function for latent variable models. Finds MLE of parameters
when the original (hard) problem can be broken up into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

» Alternate between filling in the latent variables using the best guess (posterior) and updating
the parameters based on this guess:

r+1 _ 1
. Estep g'" =argmax F(q,0")
« M-step: 0" =arg max F(g™,0")

* |Inthe M-step we optimize a lower bound on the likelihood. In the E-step we close the gap,
making bound=likelihood.
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More Examples



Conditional mixture model: Mixture of experts

XH

Yy

N

* We will model p( Y| X} using different experts, each responsible for different regions of the input

space.

* Latent variable Zchooses expert using softmax gating function:

» Each expert can be a linear regression model: #(y
* The posterior expert responsibilities are

P(z¥ =1x)= Softmax(frx)
x,z"=1)=7% (y;6] x,0%)

P(Zk :l‘x)Pk()’Xa@kagi)

P(z¥ =1 .
( ZJP(ZJZI‘X)PJ(YX 0, Ui)

X,y,0)=

2 J b
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EM for conditional mixture model

e Model:
Pylx)=>. p(z" =11 x,&)p(y 12" =1,x,6,,0)

* The objective function )
(€.(0;x,9,2)) = (log p(z, | x,,€)) . +> (log p(y,]x,,2,,0,0))

n n

= Z Z<z,’f>10g(softmax(§,fxn))— % Zz<sz >[ (7, - ngn) +logo,” + CJ
nok no ok o

k

X N
X X
X‘«x\~
X
X
X

p(zlx,y)

 EM:

k _ 2
° E_Step: T:(ﬂ :P(zﬂk ZI‘XH,}’”,O) _ p(zn ;]'_‘);ﬂ)pk(yn‘xnaekaak)z
° M-Step: ij(zﬂ o ‘Xn)pj(yn‘xnaejagj)

« using the normal equation for standard LR& = (X" X) " X"V, but with the data re-weighted by r(ho[nework)
* IRLS and/or weighted IRLS algorithm to update {&,, 6,, o4} based on data pair (X, y,), with weights7,, "~ (homework?)
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Hierarchical mixture of experts

A twe level Dalanced Hierarchical Misxturey of Experty wmeodel ax . . .

oo modudayr Newvwral Net ... Bayegiowy Net

Gate £11 I I g212 ot
Netwrork | Netwrork
8211 Sz
xT Hyy Hiz H Lo Tx
Expert Expert Expert Expert
Mebarork Netarork Mebarork Hetarork
@ I o ®

* This is like a soft version of a depth-2 classification/regression tree.

« A yIX,Gl,élz) can be modeled as a GLIM, with parameters dependent on the values of &, and &,

(which specity a "conditional path" to a given leaf in the tree).
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Mixture of overlapping experts

XH

A X X
X
X
X
X M
X X X
Y, . >
N X X

* By removing the X2 Zarc, we can make the partitions independent of
the input, thus allowing overlap.

* This is a mixture of linear regressors; each subpopulation has a different

conditional mean.
p(z¥ =1)p.(y|X.6,.0%)

>, P =Dp;(y|x.0,.07)
J
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A Report Card for EM

 Some good things about EM:
* no learning rate (step-size) parameter
e automatically enforces parameter constraints
* very fast for low dimensions
* each iteration guaranteed to improve likelihood

* Some bad things about EM:
e can get stuck in local minima
* can be slower than conjugate gradient (especially near convergence)
* requires expensive inference step
* is a maximum likelihood/MAP method



