Learning Partially Observed GM: the Expectation-Maximization algorithm

Kayhan Batmanghelich

Recall: Learning Graphical Models

Scenarios:

- completely observed GMs
 - directed
 - undirected
- partially or unobserved GMs
 - directed
 - undirected (an open research topic)

Estimation principles:

- Maximal likelihood estimation (MLE)
- Bayesian estimation
- Maximal conditional likelihood
- Maximal "Margin"
- Maximum entropy
- We use **learning** as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

Recall: Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - Message-passing algorithm (sum-product, belief propagation)
 - The junction tree algorithms

- Approximate inference techniques
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms

Partially observed GMs

Speech recognition

Fig. 1.2 Isolated Word Problem

Partially observed GM

• Biological Evolution

Mixture Models

Mixture Models, con'd

- A density model p(x) may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).

• Each mode may correspond to a different sub-population (e.g., male

and female).

Unobserved Variables

- A variable can be unobserved (latent) because:
 - it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
 - e.g., speech recognition models, mixture models ...
 - it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - it is a noisy measurement of the a real-world object (i.e. the true value is unobserved).
- Example: Discrete latent variables can be used to partition/cluster data into sub-groups.
- Example: Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc).

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:

- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
 - Zis a latent class indicator vector:

$$p(z_n) = \operatorname{Cat}(z_n; \pi) = \prod_k (\pi_k)^{\mathbb{I}(z_n = k)}$$

• Xis a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n|z_n = k; \{\mu_k, \Sigma_k\}_{k=1}^K) = \frac{1}{(2\pi)^{m/2} \det(\Sigma_k)^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right]$$

• The likelihood of a sample:

$$p(x_n|\{\mu_k, \Sigma_k\}_{k=1}^K) = \sum_k p(z_n = k; \pi) p(x_n|z_n = k; \{\mu_k, \Sigma_k\}_{k=1}^K)$$

$$= \sum_k \prod_k (\pi_k)^{\mathbb{I}(z_n = k)} \mathcal{N}(x_n; \mu_k, \Sigma_k)$$

$$= \sum_k \pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)$$
mixture component

Why is Learning Harder?

 In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

 With latent variables, all the parameters become coupled together via marginalization

Toward the EM algorithm

- Recall MLE for completely observed data
- Data log-likelihood

Let's pretend it is

observed

Separate MLE

$$\hat{\pi}_{k,MLE} = \arg \max_{\pi} \ell (\mathbf{0}; D),$$

$$\hat{\mu}_{k,MLE} = \arg \max_{\mu} \ell (\mathbf{0}; D) \qquad \Rightarrow \quad \hat{\mu}_{k,MLE} = \frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}}$$

• What if we do not know z_n ?

Question

- " ... We solve problem X using Expectation-Maximization ..."
 - What does it mean?

- E
- What do we take expectation with?
- What do we take expectation over?

- M
 - What do we maximize?
 - What do we maximize with respect to?

Recall: K-means

$$z_n^{(t)} = \arg\max_{k} (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

$$\mu_k^{(t+1)} = \frac{\sum_{n} \delta(z_n^{(t)}, k) x_n}{\sum_{n} \delta(z_n^{(t)}, k)}$$

Expectation-Maximization

- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop

Example: Gaussian mixture model

- A mixture of K Gaussians:
 - Z is a latent class indicator vector $p(z_n) = \mathrm{Cat}(z_n;\pi) = \prod (\pi_k)^{\mathbb{I}(z_n-k)} z_n^k$
 - X is a conditional Gaussian variable with class-specific mean/covariance

$$p(\mathbf{x}_n \mid \mathbf{z}_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_n - \mu_k)^T \Sigma_k^{-1} (\mathbf{x}_n - \mu_k)\right\}$$

The likelihood of a sample:

$$p(x_n|\mu,\Sigma) = \sum_k p(z^k = 1|\pi) p(x,|z^k = 1,\mu,\Sigma)$$

$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} \mathcal{N}(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k \mathcal{N}(x,|\mu_k,\Sigma_k)$$

The expected complete log likelihood

$$\begin{split} \left\langle \ell_{c}(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{z}) \right\rangle &= \sum_{n} \left\langle \log p(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \right\rangle_{p(\boldsymbol{z} \mid \boldsymbol{x})} + \sum_{n} \left\langle \log p(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \right\rangle_{p(\boldsymbol{z} \mid \boldsymbol{x})} \\ &= \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle \left((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log \left| \boldsymbol{\Sigma}_{k} \right| + C \right) \\ & \text{© Eric Xing @ CMU. 2005-2015} \end{split}$$

E-step

• We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procedure:

Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., \mathbf{z}) given current est. of the parameters (i.e., π and μ).

$$\tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} = p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, |\mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, |\mu_i^{(t)}, \Sigma_i^{(t)})}$$

Like soft count

Here we are essentially doing inference

M-step

- We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procedure:
 - Maximization step: compute the parameters under current results of the expected value of the hidden variables

$$\pi_{k}^{*} = \arg\max\langle l_{c}(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_{k}}\langle l_{c}(\boldsymbol{\theta})\rangle = 0, \forall k, \quad \text{s.t.} \sum_{k} \pi_{k} = 1$$

$$\Rightarrow \pi_{k}^{*} = \frac{\sum_{n}\langle z_{n}^{k}\rangle_{q^{(t)}}}{N} = \frac{\sum_{n}\tau_{n}^{k(t)}}{N} = \frac{\langle n_{k}\rangle}{N}$$

$$\mu_{k}^{*} = \arg\max\langle l(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \mu_{k}^{(t+1)} = \frac{\sum_{n}\tau_{n}^{k(t)}x_{n}}{\sum_{n}\tau_{n}^{k(t)}}$$

$$\Sigma_{k}^{*} = \arg\max\langle l(\boldsymbol{\theta})\rangle, \qquad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n}\tau_{n}^{k(t)}(x_{n} - \mu_{k}^{(t+1)})(x_{n} - \mu_{k}^{(t+1)})^{T}}{\sum_{n}\tau_{n}^{k(t)}}$$

$$\frac{\partial \log|A^{-1}|}{\partial A^{-1}} = A^{T}$$

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{T}$$

 This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

Compare: K-means and EM

The EM algorithm for mixtures of Gaussians is like a "**soft version**" of the K-means algorithm.

K-means

• In the K-means "E-step" we do hard assignment:

$$z_n^{(t)} = \arg\max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

• In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

• E-step

$$\tau_n^{k(t)} = \langle z_n^k \rangle_{q^{(t)}}$$

$$= p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, |\mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, |\mu_i^{(t)}, \Sigma_i^{(t)})}$$

M-step

$$\mu_k^{(t+1)} = \frac{\sum_n \delta(z_n^{(t)}, k) x_n}{\sum_n \delta(z_n^{(t)}, k)}$$

$$\mu_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}}$$

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$\ell_c(\theta; D) = \log \sum_z p(x, z \mid \theta) = \log \sum_z p(z \mid \theta_z) p(x \mid z, \theta_x)$$

is difficult!

What shall we do?

Complete & Incomplete Log Likelihoods

Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). If Z could be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log \mathbf{p}(\mathbf{x}, \mathbf{z} \mid \theta)$$

- Recalled that in this case the objective for, e.g., MLE, **decomposes** into a sum of factors, the parameter for each factor can be estimated separately (c.f. **MLE for fully observed models**).
- But given that Z is not observed, $I_c()$ is a random quantity, cannot be maximized directly.

Incomplete log likelihood

With zunobserved, our objective becomes the log of a marginal probability:

This objective won't decouple

$$\ell_c(\theta; \mathbf{x}) = \log \mathbf{p}(\mathbf{x} \mid \theta) = \log \sum_{\mathbf{z}} \mathbf{p}(\mathbf{x}, \mathbf{z} \mid \theta)$$

Expected Complete Log Likelihood

• For **any** distribution q(z), define **expected** complete log likelihood:

$$\langle \ell_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q = \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}, \theta) \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

- A deterministic function of θ
- Linear in $I_c()$ --- inherit its factorability
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$\ell(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \Rightarrow \ell(\theta; x) \geq \left\langle \ell_{c}(\theta; x, z) \right\rangle_{q} + H_{q}$$
© Eric Xing @ CMU, 2005-2015

Lower Bounds and Free Energy

For fixed data x, define a functional called the free energy:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)} \le \ell(\theta;x)$$

• The EM algorithm is coordinate-ascent on F:

$$q^{t+1} = \arg\max_{q} F(q, \theta^{t})$$

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t})$$
$$\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta^{t})$$

E-step: maximization of expected I_c w.r.t. q

• Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- The best solution is the posterior over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $I(\theta;x) \ge F(q,\theta)$

$$F(p(z|x,\theta^{t}),\theta^{t}) = \sum_{z} p(z|x,\theta^{t}) \log \frac{p(x,z|\theta^{t})}{p(z|x,\theta^{t})}$$
$$= \sum_{z} q(z|x) \log p(x|\theta^{t})$$
$$= \log p(x|\theta^{t}) = \ell(\theta^{t};x)$$

Can also show this result using variational calculus or the fact that

$$\ell(\theta; \mathbf{X}) - \mathbf{F}(\mathbf{q}, \theta) = \mathrm{KL}(\mathbf{q} \parallel \mathbf{p}(\mathbf{z} \mid \mathbf{X}, \theta))$$
© Eric Xing @ CMU, 2005-2015

E-step ≡ plug in posterior expectation of latent variables

• Without loss of generality: assume that $p(x,z|\theta)$ is a generalized exponential family distribution:

 $p(x,z|\theta) = \frac{1}{Z(\theta)}h(x,z)\exp\left\{\sum_{i}\theta_{i}f_{i}(x,z)\right\}$

- Special cases: if p(X|Z) are GLMs, then $f_i(x,z) = \eta_i^T(z)\xi_i(x)$
- The expected complete log likelihood under $q^{t+1} = p(z | x, \theta^t)$ is

$$\left\langle \ell_{c}(\theta^{t}; \mathbf{X}, \mathbf{Z}) \right\rangle_{q^{t+1}} = \sum_{\mathbf{Z}} q(\mathbf{Z} \mid \mathbf{X}, \theta^{t}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta^{t}) - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle f_{i}(\mathbf{X}, \mathbf{Z}) \right\rangle_{q(\mathbf{Z} \mid \mathbf{X}, \theta^{t})} - A(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle \eta_{i}(\mathbf{Z}) \right\rangle_{q(\mathbf{Z} \mid \mathbf{X}, \theta^{t})} \xi_{i}(\mathbf{X}) - A(\theta)$$

M-step: maximization of expected $I_{\rm c}$ w.r.t. θ

Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \left\langle \ell_{c}(\theta; x, z) \right\rangle_{q} + H_{q}$$

• Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_c(\theta; \boldsymbol{X}, \boldsymbol{Z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\boldsymbol{Z}} \boldsymbol{q}(\boldsymbol{Z} \mid \boldsymbol{X}) \log \boldsymbol{p}(\boldsymbol{X}, \boldsymbol{Z} \mid \theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(x,z|\theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z|x,\theta)$.

Example: HMM

- Supervised learning: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good annotations of the CpG islands

(experimental)

GIVEN: the casino player allows us to observe him one evening, dice and produces 10,000 rolls

as he changes

- **Unsupervised learning**: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the there, neither do we know their composition

CpG islands

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

Hidden Markov Model:

from static to dynamic mixture models

The Baum Welch algorithm

The complete log likelihood

• The complete log likelihood
$$\ell_c(\mathbf{x}, \mathbf{y}; \theta) = \log p(\mathbf{x}, \mathbf{y}; \theta) = \log \prod_n \left(p(y_1^n) \prod_{t=2}^T p(y_t^n | y_{t-1}^n) \prod_{t=1}^T p(x_t^n | y_t^n) \right) \qquad (x_1) \qquad (x_2) \qquad (x_3) \qquad \dots$$

$$\langle \ell_c(\mathbf{x}, \mathbf{y}; \theta) \rangle = \sum_n (\langle y_1^n \rangle \log \pi) + \sum_n \sum_t tr (\langle y_t^n y_{t-1}^n \rangle \log A) + \sum_n \sum_t \langle y_t^n \rangle \log b(x_t^n)$$

$$\pi_{i} = p(y_{1} = i)$$

$$p(y_{t} = j | y_{t-1} = i) = \{a_{ij}\} = A$$

$$b_{j}(z) = p(x_{t} = z | y_{t} = j)$$

The Baum Welch algorithm

• The complete log likelihood
$$\ell_c(\mathbf{x}, \mathbf{y}; \theta) = \log p(\mathbf{x}, \mathbf{y}; \theta) = \log \prod_n \left(p(y_1^n) \prod_{t=2}^T p(y_t^n | y_{t-1}^n) \prod_{t=1}^T p(x_t^n | y_t^n) \right)$$

$$\ell_c(\mathbf{x}, \mathbf{y}; \theta) = \log p(\mathbf{x}, \mathbf{y}; \theta) = \log \prod_n \left(p(y_1^n) \prod_{t=2}^T p(y_t^n | y_{t-1}^n) \prod_{t=1}^T p(x_t^n | y_t^n) \right)$$

$$\langle \ell_c(\mathbf{x}, \mathbf{y}; \theta) \rangle = \sum_n (\langle y_1^n \rangle \log \pi) + \sum_n \sum_t tr (\langle y_t^n y_{t-1}^n \rangle \log A) + \sum_n \sum_t \langle y_t^n \rangle \log b(x_t^n)$$

$$\pi_i = p(y_1 = i)$$

$$p(y_t = j | y_{t-1} = i) = \{a_{ij}\} = A$$

$$b_j(z) = p(x_t = z | y_t = j)$$

- Fix θ and compute the marginal posterior:
 - $p(y_t = i | \mathbf{x}; \theta)$,
 - $p(y_t = i, y_{t-1} = j | x; \theta)$
- Update θ by MLE (closed-form) remember the soft count

Extension to general BN

EM for general BNs

$$p(x) = \prod_{i} p(x_i|pa(x_i)).$$

x represents both hidden and observed: $x^n = (v^n, h^n)$

$$\mathcal{V} = \left\{ v^1, \dots, v^N \right\}$$

$$\log p(\mathcal{V}|\theta) \ge \tilde{L}(\{q\}, \theta) \equiv \underbrace{-\sum_{n=1}^{N} \langle \log q(h^n|v^n) \rangle_{q(h^n|v^n)}}_{\text{entropy}} + \underbrace{\sum_{n=1}^{N} \langle \log p(h^n, v^n|\theta) \rangle_{q(h^n|v^n)}}_{\text{energy}}$$

$$\sum_{n} \langle \log p(x^n) \rangle_{q_t(h^n|v^n)} = \sum_{n} \sum_{i} \langle \log p(x_i^n|\operatorname{pa}(x_i^n)) \rangle_{q_t(h^n|v^n)}$$

A bit of notation:

$$q_t^n(x) = q_t(h^n|v^n)\delta(v,v^n)$$

$$q_t(x) = \frac{1}{N} \sum_{n=1}^{N} q_t^n(x)$$

$$N \langle \log p(x) \rangle_{q_t(x)} = N \sum_{x} \left[\log p(x) \right] \frac{1}{N} \sum_{n} q_t(h^n | v^n) \delta(v, v^n) = \sum_{n} \langle \log p(x^n) \rangle_{q_t(h^n | v^n)}$$

EM for general BNs

$$p(x) = \prod_{i} p(x_{i}|\operatorname{pa}(x_{i})). \qquad x \text{ represents both hidden and observed: } x^{n} = (v^{n}, h^{n})$$

$$\mathcal{V} = \left\{v^{1}, \dots, v^{N}\right\}$$

$$\log p(\mathcal{V}|\theta) \geq \tilde{L}(\left\{q\right\}, \theta) \equiv \underbrace{-\sum_{n=1}^{N} \left\langle \log q(h^{n}|v^{n}) \right\rangle_{q(h^{n}|v^{n})} + \sum_{n=1}^{N} \left\langle \log p(h^{n}, v^{n}|\theta) \right\rangle_{q(h^{n}|v^{n})}}_{\text{energy}}$$

$$KL(q_{t}(x_{i}|pa(x_{i}))||p(x_{i}|pa(x_{i}))$$

$$\sum_{i} \left\langle \left\langle \log p(x_{i}|pa(x_{i})) \right\rangle_{q_{t}(x_{i}|pa(x_{i}))} \right\rangle_{q_{t}(pa(x_{i}))}$$

$$\sum_{i} \left\langle \left\langle \log q_{t}(x_{i}|pa(x_{i})) \right\rangle_{q_{t}(x_{i}|pa(x_{i}))} - \left\langle \log p(x_{i}|pa(x_{i})) \right\rangle_{q_{t}(x_{i}|pa(x_{i}))} \right\rangle_{q_{t}(pa(x_{i}))}$$

EM for general BNs

```
p(x) = \prod p(x_i|pa(x_i)).
                                                                x represents both hidden and observed: x^n = (v^n, h^n)
                                                                                                \mathcal{V} = \{v^1, \dots, v^N\}
 1: t = 1
                                                                            KL(q_t(x_i|pa(x_i))||p(x_i|pa(x_i))|
 2: Set p_t(x_i|pa(x_i)) to initial values.
 3: while p(x_i|pa(x_i)) not converged (or likelihood not converged)
         t \leftarrow t + 1
 4:
                                                                               p^{new}(x_i|pa(x_i)) = q_t(x_i|pa(x_i))
        for n=1 to N do
 5:
              q_t^n(x) = p_t(h^n|v^n) \,\delta(v,v^n)
 6:
                                                                            p^{new}(x_i|\text{pa}(x_i)) = \frac{\sum_n q_t^n(x_i, \text{pa}(x_i))}{\sum_i q_i^{n'}(\text{pa}(x_i))}
        end for
         for i=1 to K do
 8:
             p_{t+1}(x_i|\text{pa}(x_i)) = \frac{\sum_{n=1}^{N} q_t^n(x_i,\text{pa}(x_i))}{\sum_{n=1}^{N} q_t^{n'}(\text{pa}(x_i))}
         end for
10:
11: end while
12: return p_t(x_i|\text{pa}(x_i))
```

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: $q^{t+1} = \arg\max_{q} F(q, \theta^{t})$ M-step: $\theta^{t+1} = \arg\max_{\theta} F(q^{t+1}, \theta^{t})$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

More Examples

Conditional mixture model: Mixture of experts

- We will model p(Y|X) using different experts, each responsible for different regions of the input space.
 - Latent variable Z chooses expert using softmax gating function: $P(z^k = 1 | x) = \operatorname{Softmax}(\xi^T x)$
 - Each expert can be a linear regression model: $P(y|x,z^k=1) = \mathcal{N}(y;\theta_k^Tx,\sigma_k^2)$
 - The posterior expert responsibilities are

$$P(z^{k} = 1 | x, y, \theta) = \frac{p(z^{k} = 1 | x) p_{k}(y | x, \theta_{k}, \sigma_{k}^{2})}{\sum_{j} p(z^{j} = 1 | x) p_{j}(y | x, \theta_{j}, \sigma_{j}^{2})}$$

EM for conditional mixture model

Model:

$$P(y|x) = \sum_{k} p(z^{k} = 1 \mid x, \xi) p(y|z^{k} = 1, x, \theta_{i}, \sigma)$$
active function

• The objective function

$$\langle \ell_{c}(\mathbf{\theta}; x, y, z) \rangle = \sum_{n} \langle \log p(z_{n} \mid x_{n}, \xi) \rangle_{p(z\mid x, y)} + \sum_{n} \langle \log p(y_{n} \mid x_{n}, z_{n}, \theta, \sigma) \rangle_{p(z\mid x, y)}$$

$$= \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle \log \left(\operatorname{softmax}(\xi_{k}^{T} x_{n}) \right) - \frac{1}{2} \sum_{n} \sum_{k} \langle z_{n}^{k} \rangle \left(\frac{(y_{n} - \theta_{k}^{T} x_{n})}{\sigma_{k}^{2}} + \log \sigma_{k}^{2} + C \right)$$

- EM:
 - $\tau_n^{k(t)} = P(z_n^k = 1 | x_n, y_n, \theta) = \frac{p(z_n^k = 1 | x_n) p_k(y_n | x_n, \theta_k, \sigma_k^2)}{\sum_{i} p(z_n^j = 1 | x_n) p_i(y_n | x_n, \theta_i, \sigma_i^2)}$ • E-step: • M-step:
 - using the normal equation for standard LR $\theta = (X^T X)^{-1} X^T Y$, but with the data re-weighted by τ (homework)
 - IRLS and/or weighted IRLS algorithm to update $\{\xi_k, \theta_k, \sigma_k\}$ based on data pair (x_n, y_n) , with weights $\tau_n^{\kappa(\tau)}$ (homework?)

Hierarchical mixture of experts

- This is like a soft version of a depth-2 classification/regression tree.
- $P(Y|X,G_1,G_2)$ can be modeled as a GLIM, with parameters dependent on the values of G_1 and G_2 (which specify a "conditional path" to a given leaf in the tree).

Mixture of overlapping experts

- By removing the $X \rightarrow Z$ arc, we can make the partitions independent of the input, thus allowing overlap.
- This is a mixture of linear regressors; each subpopulation has a different conditional mean.

$$P(z^{k} = 1 | x, y, \theta) = \frac{p(z^{k} = 1)p_{k}(y | x, \theta_{k}, \sigma_{k}^{2})}{\sum_{j} p(z^{j} = 1)p_{j}(y | x, \theta_{j}, \sigma_{j}^{2})}$$

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method