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Markov network

Undirected Graphical Models

So far, we have dealt only with directed graphical models, or Bayesian networks. These models
are useful because both the structure and the parameters provide a natural representation for
many types of real-world domains. In this chapter, we turn our attention to another important
class of graphical models, defined on the basis of undirected graphs.

As we will see, these models are useful in modeling a variety of phenomena where one
cannot naturally ascribe a directionality to the interaction between variables. Furthermore, the
undirected models also offer a different and often simpler perspective on directed models, in
terms of both the independence structure and the inference task. We also introduce a combined
framework that allows both directed and undirected edges. We note that, unlike our results in
the previous chapter, some of the results in this chapter require that we restrict attention to
distributions over discrete state spaces.

The Misconception Example

To motivate our discussion of an alternative graphical representation, let us reexamine the
Misconception example of section 3.4.2 (example 3.8). In this example, we have four students
who get together in pairs to work on their homework for a class. The pairs that meet are shown
via the edges in the undirected graph of figure 3.10a.

As we discussed, we intuitively want to model a distribution that satisfies (A L C | {B, D})
and (B L D | {A,C}), but no other independencies. As we showed, these independencies
cannot be naturally captured in a Bayesian network: any Bayesian network I-map of such a
distribution would necessarily have extraneous edges, and it would not capture at least one
of the desired independence statements. More broadly, a Bayesian network requires that we
ascribe a directionality to each influence. In this case, the interactions between the variables
seem symmetrical, and we would like a model that allows us to represent these correlations
without forcing a specific direction to the influence.

A representation that implements this intuition is an undirected graph. As in a Bayesian
network, the nodes in the graph of a Markov network represent the variables, and the edges
correspond to a notion of direct probabilistic interaction between the neighboring variables —
an interaction that is not mediated by any other variable in the network. In this case, the graph
of figure 3.10, which captures the interacting pairs, is precisely the Markov network structure
that captures our intuitions for this example. As we will see, this similarity is not an accident.
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Figure 4.1 Factors for the Misconception example

The remaining question is how to parameterize this undirected graph. Because the interaction
is not directed, there is no reason to use a standard CPD, where we represent the distribution
over one node given others. Rather, we need a more symmetric parameterization. Intuitively,
what we want to capture is the affinities between related variables. For example, we might want
to represent the fact that Alice and Bob are more likely to agree than to disagree. We associate
with A, B a general-purpose function, also called a factor:

Let D be a set of random variables. We define a factor ¢ to be a function from Val(D) to IR. A
factor is nonnegative if all its entries are nonnegative. The set of wariables D is called the scope of
the factor and denoted Scope|d)]. m

Unless stated otherwise, we restrict attention to nonnegative factors.

In our example, we have a factor ¢ (A, B) : Val(A, B) — IR*. The value associated with a
particular assignment a, b denotes the affinity between these two values: the higher the value
¢1(a,b), the more compatible these two values are.

Figure 4.1a shows one possible compatibility factor for these variables. Note that this factor is
not normalized; indeed, the entries are not even in [0, 1]. Roughly speaking, ¢;(A4, B) asserts
that it is more likely that Alice and Bob agree. It also adds more weight for the case where they
are both right than for the case where they are both wrong. This factor function also has the
property that ¢;(a’,b%) < ¢1(a®, b'). Thus, if they disagree, there is less weight for the case
where Alice has the misconception but Bob does not than for the converse case.

In a similar way, we define a compatibility factor for each other interacting pair: {B,C},
{C, D}, and {4, D}. Figure 4.1 shows one possible choice of factors for all four pairs. For
example, the factor over C, D represents the compatibility of Charles and Debbie. It indicates
that Charles and Debbie argue all the time, so that the most likely instantiations are those where
they end up disagreeing.

As in a Bayesian network, the parameterization of the Markov network defines the local
interactions between directly related variables. To define a global model, we need to combine
these interactions. As in Bayesian networks, we combine the local models by multiplying them.
Thus, we want P(a,b,c,d) to be ¢1(a,bd) - ¢2(b,c) - #3(c,d) - ¢4(d,a). In this case, however,
we have no guarantees that the result of this process is a normalized joint distribution. Indeed,
in this example, it definitely is not. Thus, we define the distribution by taking the product of
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|  Assignment | Unnormalized | Normalized
ATl 300,000 0.04
a® |00 ||t 300, 000 0.04
8% | b0 | et | 300, 000 0.04
a® [0 |t | dt 30 4.1-107
a® | bt | 0| dO 500 6.9-10"°
a® || 0| dt 500 6.9.107°
a® | bl | et | d 5,000, 000 0.69
a® | bl | et | dt 500 6.9-10°%
al | 9|0 |d° 100 1.4-107°
al | 0| 0 | dt 1, 000, 000 0.14
at | b0 | et | d° 100 1.4-1075
al | B9 | ! | 4t 100 1.4-10"3
al | b! | c® | d® 10| 14:107°
al | b | | d? 100, 000 | 0.014
at [ bt |t | d° 100, 000 0.014
a' | bt |t |dt 100, 000 0.014

Figure 4.2 Joint distribution for the Misconception example. The unnormalized measure and the
normalized joint distribution over A, B, C, D, obtained from the parameterization of figure 4.1. The value
of the partition function in this example is 7, 201, 840.

the local factors, and then normalizing it to define a legal distribution. Specifically, we define

P(ﬂ., b] C, d) = %‘Jﬁl(a’? b) ) ¢‘Z(b! C) ) ‘353(6! d) ) ¢4(d3 a‘)r

where

Z= Y ¢1(a,b)- $a(b,c) - ps(c,d) - $u(d, )

a,b,c,d

is a normalizing constant known as the partition function. The term “partition” originates from
the early history of Markov networks, which originated from the concept of Markov random field
(or MRF) in statistical physics (see box 4.C); the “function” is because the value of Z is a function
of the parameters, a dependence that will play a significant role in our discussion of learning.

In our example, the unnormalized measure (the simple product of the four factors) is shown
in the next-to-last column in figure 4.2. For example, the entry corresponding to a!,b',c®, d*
is obtained by multiplying:

d1(a,b) - do(b*,c°) - pa(c”,d) - pa(d*,a') =10-1-100- 100 = 100, 000.

The last column shows the normalized distribution.

We can use this joint distribution to answer queries, as usual. For example, by summing out
A, C, and D, we obtain P(b') ~ 0.26 and P(b°) ~ 0.74; that is, Bob is 26 percent likely to
have the misconception. On the other hand, if we now observe that Charles does not have the
misconception (c%), we obtain P(b! | c®) ~ 0.06.
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The benefit of this representation is that it allows us great fletility in representing inter-
actions between variables. For example, if we want to change th nature of the interaction
between A and B, we can simply modify the entries in that factor,vihout having to deal with
normalization constraints and the interaction with other factors. Treliip side of this flexibility,
as we will see later, is that the effects of these changes are not alwapintuitively understandable.

As in Bayesian networks, there is a tight connection between i factorization of the dis-
tribution and its independence properties. The key result her s stated in exercise 2.5:
Pk (X LY | Z)if and only if we can write P in the form Pi{) = ¢1(X, Z)¢2(Y, Z).
In our example, the structure of the factors allows us to decompos the distribution in several
ways; for example:

P(4,B,0,D) = | 561(4, B)ga(B,C)| $3(C, D)6u(4, D).

From this decomposition, we can infer that P |= (B L D | A, C). Ve can similarly infer that
P = (A L C| B, D). These are precisely the two independencies th we tried, unsuccessfully,
to achieve using a Bayesian network, in example 3.8. Moreover, thstproperties correspond to
our intuition of “paths of influence” in the graph, where we have fu B and D are separated
given A,C, and that A and C are separated given B, D. Indeed s in a Bayesian network,
independence properties of the distribution P correspond directly b separation properties in
the graph over which P factorizes.

Parameterization

We begin our formal discussion by describing the parameterization ised in the class of undi-
rected graphical models that are the focus of this chapter. In themxt section, we make the
connection to the graph structure and demonstrate how it capturesite independence properties
of the distribution.

To represent a distribution, we need to associate the graph strucu with a set of parameters,
in the same way that CPDs were used to parameterize the directed gaph structure. However,
the parameterization of Markov networks is not as intuitive as that o Bayesian networks, since
the factors do not correspond either to probabilities or to conditind probabilities. As a con-
sequence, the parameters are not intuitively understandable, makig them hard to elicit from
people. As we will see in chapter 20, they are also significantly hade to estimate from data.

Factors

A key issue in parameterizing a Markov network is that the repeentation is undirected, so
that the parameterization cannot be directed in nature. We therele use factors, as defined in
definition 4.1. Note that a factor subsumes both the notion of a join éistribution and the notion
of a CPD. A joint distribution over D is a factor over D: it spedis a real number for every
assignment of values of D. A conditional distribution P(X | Ujsa factor over {X} UU.
However, both CPDs and joint distributions must satisfy certain mmalization constraints (for
example, in a joint distribution the numbers must sum to 1), whees there are no constraints
on the parameters in a factor.
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Figure 4.3 An example of factor product

As we discussed, we can view a factor as roughly describing the “compatibilities” between
different values of the variables in its scope. We can now parameterize the graph by associating
a set of a factors with it. One obvious idea might be to associate parameters directly with
the edges in the graph. However, a simple calculation will convince us that this approach is
insufficient to parameterize a full distribution.

Consider a fully connected graph over X; in this case, the graph specifies no conditional indepen-
dence assumptions, so that we should be able to specify an arbitrary joint distribution over X. If
all of the variables are binary, each factor over an edge would have 4 parameters, and the total
number of parameters in the graph would be 4(7;). However, the number of parameters required to
specify a joint distribution over n binary variables is 2™ — 1. Thus, pairwise factors simply do not
have enough parameters to encompass the space of joint distributions. More intuitively, such factors
capture only the pairwise interactions, and not interactions that involve combinations of values of
larger subsets of wariables. o

A more general representation can be obtained by allowing factors over arbitrary subsets of
variables. To provide a formal definition, we first introduce the following important operation
on factors.

Let X, Y, and Z be three disjoint sets of variables, and let ¢1(X,Y) and ¢o(Y,Z) be two
factors. We define the factor product ¢, x ¢ to be a factor ¢ : Val(X,Y, Z) — IR as follows:

w(X,Y‘Z:}:@l(X,Y)QI)Q(Y,Z) |

The key aspect to note about this definition is the fact that the two factors ¢; and ¢, are
multiplied in a way that “matches up” the common part ¥. Figure 4.3 shows an example
of the product of two factors. We have deliberately chosen factors that do not correspond
either to probabilities or to conditional probabilities, in order to emphasize the generality of this
operation.
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As ve have already observed, both CPDs and joint distributions are factors. Indeed, the chain
rule for Bayesian networks defines the joint distribution factor as the product of the CPD factors.
For exmple, when computing P(A, B) = P(A)P(B | A), we always multiply entries in the
P(A)md P(B | A) tables that have the same value for A. Thus, letting ¢x,(X;, Pax,)
represent P(X; | Pax,), we have that

PXy,..., X)) =[] ¢x..

4,2.2  Gibbs Distributions and Markov Networks

We cannow use the more general notion of factor product to define an undirected parameteri-
zation of a distribution.

Definition 4.3 A distribution Py is a Gibbs distribution parameterized by a set of factors ® = {¢1(D1), ..., ¢g (D

Gibbs if it isdefined as follows:
distribution 1

PolXy,..., Xp) = —Ps(X1,..., Xn),

where

BylXu,..., Xp) = $1(D1) x ¢2(D2) X --- X $n(Dim)
is anmnormalized measure and

Z= % Pa(Xy,...,Xn)

X;....,_.X.n_
partition function  is a normalizing constant called the partition function. =

It istempting to think of the factors as representing the marginal probabilities of the variables
in ther scope. Thus, looking at any individual factor, we might be led to believe that the
behavior of the distribution defined by the Markov network as a whole corresponds to the
behavir defined by the factor. However, this intuition is overly simplistic. A factor is only one

g  contrbution to the overall joint distribution. The distribution as a whole has to take into
consideration the contributions from all of the factors involved.

Example 4.2 Consider the distribution of figure 4.2. The marginal distribution over A, B, is

o 013
a b 0.69
at | 0.14
ot b | 0.04

The must likely configuration is the one where Alice and Bob disagree. By contrast, the highest
entryin the factor ¢1(A, B) in figure 4.1 corresponds to the assignment a°,b°. The reason for the
discrepmcy is the influence of the other factors on the distribution. In particular, ¢3(C, D) asserts
that Charles and Debbie disagree, whereas ¢2(B, C) and ¢4(D, A) assert that Bob and Charles
agree mnd that Debbie and Alice agree. Taking just these factors into consideration, we would
conclute that Alice and Bob are likely to disagree. In this case, the “strength” of these other factors is
much sronger than that of the ¢, (A, B) factor, so that the influence of the latter is overwhelmedm
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(a) (®)

Figure 4.4 The cliques in two simple Markov networks. In (a), the cliques are the pairs {A, B},
{B,C}, {C, D}, and {D, A}. In (b), the cliques are {4, B, D} and {B,C, D}.

We now want to relate the parameterization of a Gibbs distribution to a graph structure. If
our parameterization contains a factor whose scope contains both X and Y, we are introducing
a direct interaction between them. Intuitively, we would like these direct interactions to be
represented in the graph structure. Thus, if our parameterization contains such a factor, we
would like the associated Markov network structure H to contain an edge between X and Y.

We say that a distribution Py with ® = {¢1(D:),...,0x(Dxk)} factorizes over a Markov
network H if each Dy (k = 1,..., K) is a complete subgraph of H. =

The factors that parameterize a Markov network are often called clique potentials.

As we will see, if we associate factors only with complete subgraphs, as in this definition, we
are not violating the independence assumptions induced by the network structure, as defined
later in this chapter.

Note that, because every complete subgraph is a subset of some (maximal) clique, we can
reduce the number of factors in our parameterization by allowing factors only for maximal
cliques. More precisely, let C1,...,C} be the cliques in . We can parameterize P using a
set of factors ¢1(C1),...,®1(C1). Any factorization in terms of complete subgraphs can be
converted into this form simply by assigning each factor to a clique that encompasses its scope
and multiplying all of the factors assigned to each clique to produce a clique potential. In our
Misconception example, we have four cliques: {4, B}, {B,C}, {C, D}, and {A, D}. Each of
these cliques can have its own clique potential. One possible setting of the parameters in these
clique potential is shown in figure 4.1. Figure 4.4 shows two examples of a Markov network and
the (maximal) cliques in that network.

Although it can be used without loss of generality, the parameterization using maximal
clique potentials generally obscures structure that is present in the original set of factors.
For example, consider the Gibbs distribution described in example 4.1 Here, we have a potential
for every pair of variables, so the Markov network associated with this distribution is a single
large clique containing all variables. If we associate a factor with this single clique, it would be
exponentially large in the number of variables, whereas the original parameterization in terms of
edges requires only a quadratic number of parameters. See section 4.4.11 for further discussion.
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Figure 4.A.]1 — A pairwise Markovetwork (MRF) structured as a grid.

Box 4.A — Concept: Pairwise Mukov Networks. A subclass of Markov networks that arises
in many contexts is that of pairwis \arkov networks, representing distributions where all of the
factors are over single variables or pin of variables. More precisely, a pairwise Markov network over
a graph H is associated with a sefifnode potentials {¢(X;) : ¢ = 1,...,n} and a set of edge
potentials {¢(X;, X;) : (X;, X;) € H}. The overall distribution is (as always) the normalized
product of all of the potentials (bothnode and edge). Pairwise MRFs are attractive because of their
simplicity, and because interaction i edges are an important special case that often arises in
practice (see, for example, box 4.C ad box 4.B).

A class of pairwise Markov networsthat often arises, and that is commonly used as a benchmark
for inference, is the class of networksdructured in the form of a grid, as shown in figure 4A.1. As we
discuss in the inference chapters of his book, although these networks have a simple and compact
representation, they pose a significai challenge for inference algorithms.

Reduced Markov Networks

We end this section with one finalncept that will prove very useful in later sections. Consider
the process of conditioning a disthution on some assignment u to some subset of variables
U. Conditioning a distribution coresponds to eliminating all entries in the joint distribution
that are inconsistent with the event ' = w, and renormalizing the remaining entries to sum
to 1. Now, consider the case wherour distribution has the form Pp for some set of factors
®. Each entry in the unnormalizeimeasure Py is a product of entries from the factors ®, one
entry from each factor. If, in somefactor, we have an entry that is inconsistent with U = wu,
it will only contribute to entries in Py that are also inconsistent with this event. Thus, we can
eliminate all such entries from even factor in ®.
More generally, we can define:
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Figure 4.5 Factor reduction: The factor computed in figure 4.3, reduced to the context C' = el

Let ¢(Y') be a factor, and U = u an assignment for U C Y. We define the reduction of the
factor ¢ to the context U = u, denoted ¢[U = u| (and abbreviated ¢[u)), to be a factor over scope
Y' =Y — U, such that

Plul(y’) = 8y, u).
ForU ¢ Y, we define ¢[u] to be ¢[U’ = u'], where U' = U NY, and u' = w(U’), where
w(U’) denotes the assignment in w to the variables in U’ m

Figure 4.5 illustrates this operation, reducing the of figure 4.3 to the context C' = ¢'.
Now, consider a product of factors. An entry in the product is consistent with u if and only
if it is a product of entries that are all consistent with w. We can therefore define:

Let Py be a Gibbs distribution parameterized by ® = {¢1,...,¢x(}) and let u be a context.
The reduced Gibbs distribution P[u) is the Gibbs distribution defined by the set of factors ®[u] =
{#1[u],...,ox[ul}. "

Reducing the set of factors defining Py to some context u corresponds directly to the opera-
tion of conditioning Py on the observation u. More formally:

Let Ps(X) be a Gibbs distribution. Then Pplu] = Ps(W | u) where W = X — U.

Thus, to condition a Gibbs distribution on a context u, we simply reduce every one of its
factors to that context. Intuitively, the renormalization step needed to account for u is simply
folded into the standard renormalization of any Gibbs distribution. This result immediately
provides us with a construction for the Markov network that we obtain when we condition the
associated distribution on some observation .

Let H be a Markov network over X and U = u a context. The reduced Markov network 7{[u]
is @ Markov network over the nodes W = X — U, where we have an edge X —Y if there is an
edge X —Y inH. |

Let Py(X) be a Gibbs distribution that factorizes over H, and U = w a context. Then Pg|u]
factorizes over H[u).
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Figure 4.6 Markov networks for the factors in an extended Student example: (a) The initial set of
factors; (b) Reduced to the context G = g; (c) Reduced to the context G = g, S = s.

Happy

(b)

Note the contrast to the effect of conditioning in a Bayesian network: Here, conditioning on a
context u only eliminates edges from the graph; in a Bayesian network, conditioning on evidence
can activate a v-structure, creating new dependencies. We return to this issue in section 4.5.1.1.

Consider, for example, the Markov network shown in figure 4.6a; as we will see, this network is
the Markov network required to capture the distribution encoded by an extended version of our
Student Bayesian network (see figure 9.8). Figure 4.6b shows the same Markov network reduced
over a context of the form G = g, and (c) shows the network reduced over a context of the form
G = g, S = s. As we can see, the network structures are considerably simplified. u

Box 4.B — Case Study: Markov Networks for Computer Vision. One important application ar
for Markov networks is computer vision. Markov networks, typically called MRFs in this vision com-
munity, have been used for a wide variety of visual processing tasks, such as image segmentation,
removal of blur or noise, stereo reconstruction, object recognition, and many more.

In most of these applications, the network takes the structure of a pairwise MRE where the
wariables correspond to pixels and the edges (factors) to interactions between adjacent pixels in
the grid that represents the image; thus, each (interior) pixel has exactly four neighbors. The value
space of the variables and the exact form of factors depend on the task. These models are usually
formulated in terms of energies (negative log-potentials), so that values represent “penalties,” and a
lower walue corresponds to a higher-probability configuration.

In image denoising, for example, the task is to restore the “true” walue of all of the pixels
given possibly noisy pixel values. Here, we have a node potential for each pixel X; that penalizes
large discrepancies from the observed pixel value y;. The edge potential encodes a preference for
continuity between adjacent pixel values, penalizing cases where the inferred value for X; is too
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far from the inferred pixel walue for one of its neighbors X;. However, it is important not to
overpenalize true disparities (such as edges between objects or regions), leading to oversmoothing of
the image. Thus, we bound the penalty, using, for example, some truncated norm, as described in
box 4.D: €(z;, x;) = min(c||z; — z;]p, distmax) (for p € {1,2}).

Slight variants of the same model are used in many other applications. For example, in stereo
reconstruction, the goal is to reconstruct the depth disparity of each pixel in the image. Here, the
values of the variables represent some discretized version of the depth dimension (usually more finely
discretized for distances close to the camera and more coarsely discretized as the distance from the
camera increases). The individual node potential for each pixel X; uses standard techniques from
computer vision to estimate, from a pair of stereo images, the individual depth disparity of this
pixel. The edge potentials, precisely as before, often use a truncated metric to enforce continuity of
the depth estimates, with the truncation avoiding an overpenalization of true depth disparities (for
example, when one object is partially in front of the other). Here, it is also quite common to make
the penalty inversely proportional to the image gradient between the two pixels, allowing a smaller
penalty to be applied in cases where a large image gradient suggests an edge between the pixels,
possibly corresponding to an occlusion boundary.

In image segmentation, the task is to partition the image pixels into regions corresponding to
distinct parts of the scene. There are different variants of the segmentation task, many of which
can be formulated as a Markov network. In one formulation, known as multiclass segmentation,
each variable X; has a domain {1, ..., K}, where the value of X; represents a region assignment
for pixel i (for example, grass, water, sky, car). Since classifying every pixel can be computationally
expensive, some state-of-the-art methods for image segmentation and other tasks first oversegment
the image into superpixels (or small coherent regions) and classify each region — all pixels within
a region are assigned the same label. The oversegmented image induces a graph in which there is
one node for each superpixel and an edge between two nodes if the superpixels are adjacent (share
a boundary) in the underlying image. We can now define our distribution in terms of this graph.

Features are extracted from the image for each pixel or superpixel. The appearance features
depend on the specific task. In image segmentation, for example, features typically include statistics
over color, texture, and location. Often the features are clustered or provided as input to local
classifiers to reduce dimensionality. The features used in the model are then the soft cluster assign-
ments or local classifier outputs for each superpixel. The node potential for a pixel or superpixel
is then a function of these features. We note that the factors used in defining this model depend
on the specific walues of the pixels in the image, so that each image defines a different probability
distribution over the segment labels for the pixels or superpixels. In effect, the model used here is a
conditional random field, a concept that we define more formally in section 4.6.1.

The model contains an edge potential between every pair of neighboring superpixels X;, X;.
Most simply, this potential encodes a contiguity preference, with a penalty of A whenever X; # X ;.
Again, we can improve the model by making the penalty depend on the presence of an image
gradient between the two pixels. An even better model does more than penalize discontinuities. We
can have nondefault values for other class pairs, allowing us to encode the fact that we more often
find tigers adjacent to vegetation than adjacent to water; we can even make the model depend on
the relative pixel location, allowing us to encode the fact that we usually find water below vegetation,
cars over roads, and sky above everything.

Figure 4.B.1 shows segmentation results in a model containing only potentials on single pixels
(thereby labeling each of them independently) versus results obtained from a model also containing
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building

Figure 4.B.1 — Two examples of image segmentation results (a) The original image. (b) An overseg-
mentation known as superpixels; each superpixel is associated with a random variable that designates its
segment assignment. The use of superpixels reduces the size of the problems. (c) Result of segmentation
using node potentials alone, so that each superpixel is classified independently. (d) Result of segmentation
using a pairwise Markov network encoding interactions between adjacent superpixels.

pairwise potentials. The difference in the quality of the results clearly illustrates the importance of
modeling the correlations between the superpixels.
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Markov Network Independencies

In section 4.1, we gave an intuitive justification of why an undirected graph seemed to capture
the types of interactions in the Misconception example. We now provide a formal presentation
of the undirected graph as a representation of independence assertions.

Basic Independencies

As in the case of Bayesian networks, the graph structure in a Markov network can be viewed
as encoding a set of independence assumptions. Intuitively, in Markov networks, probabilistic
influence “flows” along the undirected paths in the graph, but it is blocked if we condition on
the intervening nodes.

Let H be a Markov network structure, and let X1 — ... —X}. be a path in H. Let Z C X be a set
of observed variables. The path X, —... —X} is active given Z if none of the X;’5,i = 1,... k,
isin Z. o

Using this notion, we can define a notion of separation in the graph.
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We say that a set of nodes Z separates X and Y in 'H, denoted sep, (X;Y | Z), if there is no
active path between any node X € X andY €Y given Z. We define the global independencies
associated with H to be:

IH)={(X LY | Z) : sepy(X;Y | Z)}. m

As we will discuss, the independencies in Z(7) are precisely those that are guaranteed to
hold for every distribution P over H. In other words, the separation criterion is sound for
detecting independence properties in distributions over H.

Note that the definition of separation is monotonic in Z, that is, if sep, (X;Y | Z), then
sepy(X;Y | Z') for any Z' > Z. Thus, if we take separation as our definition of the inde-
pendencies induced by the network structure, we are effectively restricting our ability to encode
nonmonotonic independence relations. Recall that in the context of intercausal reasoning in
Bayesian networks, nonmonotonic reasoning patterns are quite useful in many situations —
for example, when two diseases are independent, but dependent given some common symp-
tom. The nature of the separation property implies that such independence patterns cannot be
expressed in the structure of a Markov network. We return to this issue in section 4.5.

As for Bayesian networks, we can show a connection between the independence properties
implied by the Markov network structure, and the possibility of factorizing a distribution over
the graph. As before, we can now state the analogue to both of our representation theorems for
Bayesian networks, which assert the equivalence between the Gibbs factorization of a distribution
P over a graph H and the assertion that H is an I-map for P, that is, that P satisfies the Markov
assumptions Z(H).

Soundness

We first consider the analogue to theorem 3.2, which asserts that a Gibbs distribution satisfies
the independencies associated with the graph. In other words, this result states the soundness
of the separation criterion.

Let P be a distribution over X, and H a Markov network structure over X. If P is a Gibbs
distribution that factorizes over H, then H is an I-map for P.

Prooe Let X, Y, Z be any three disjoint subsets in X’ such that Z separates X and Y in H.
We want to show that P = (X L Y | Z).

We start by considering the case where X UY U Z = X. As Z separates X from Y, there
are no direct edges between X and Y. Hence, any clique in M is fully contained either in
X UZ orin YU Z. Let Tx be the indexes of the set of cliques that are contained in X U Z,
and let Ty be the indexes of the remaining cliques. We know that

1 , .
P(Xy,.. Xn) = > H ¢i(Ds) - H ¢i(Ds).
tELx i€y
As we discussed, none of the factors in the first product involve any variable in Y, and none in
the second product involve any variable in X. Hence, we can rewrite this product in the form:

B, Xaj= %f(X, Z)9(Y, Z).
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From this decomposition, the desired independence follows immediately (exercise 2.5).

Now consider the case where X UY UZ C X. Let U = X — (X UY U Z). We can
partition U into two disjoint sets U1 and Uy such that Z separates X UU; from Y U U3 in
H. Using the preceding argument, we conclude that P = (X, U, L Y ,U, | Z). Using the
decomposition property (equation (2.8)), we conclude that P = (X LY | Z). m

The other direction (the analogue to theorem 3.1), which goes from the independence prop-
erties of a disribution to its factorization, is known as the Hammersley-Clifford theorem. Unlike
for Bayesian networks, this direction does not hold in general. As we will show, it holds only
under the addtional assumption that P is a positive distribution (see definition 2.5).

Let P be a postive distribution over X, and H a Markov network graph over X. If H is an I-map
for P, then Pis aGibbs distribution that factorizes over H.

To prove this result, we would need to use the independence assumptions to construct a set
of factors over M that give rise to the distribution P. In the case of Bayesian networks, these
factors were simply CPDs, which we could derive directly from P. As we have discussed, the
correspondence between the factors in a Gibbs distribution and the distribution P is much
more indirect. The construction required here is therefore significantly more subtle, and relies
on concepts that we develop later in this chapter; hence, we defer the proof to section 4.4
(theorem 4.8},

This result shows that, for positive distributions, the global independencies imply that
the distribution factorizes according the network structure. Thus, for this class of distri-
butions, we have that a distribution P factorizes over a Markov network # if and only if
‘H is an I-map of P. The positivity assumption is necessary for this result to hold:

Consider a ditribution P over four binary random variables X1, X5, X3, X4, which gives proba-
bility 1/8 to ewch of the following eight configurations, and probability zero to all others:

0,0,0,00 100,0) (110,00 (1110}
0,000 ©0L) (0LLD) (LLLD

Let 'H be the gaph X, —Xo—X3—X4—X,. Then P satisfies the global independencies with
respect to H. For example, consider the independence (X, L X3 | Xo, X4). For the assignment
Xy = 3, X, = 1%, we have that only assignments where X; = 1 receive positive probability.
Thus, Pz} |2},2Y) = 1, and X, is trivially independent of X5 in this conditional distribution.
A similar analsis applies to all other cases, so that the global independencies hold. However, the
distribution P does not factorize according to H. The proof of this fact is left as an exercise (see
exeicise 4.1). ]

Completeness

The preceding discussion shows the soundness of the separation condition as a criterion for
detecting independencies in Markov networks: any distribution that factorizes over G satisfies
the independence assertions implied by separation. The next obvious issue is the completeness
of this criterion.
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As for Bayesian networks, the strong version of completeness does not hold in this setting. In
other words, it is not the case that every pair of nodes X and Y that are not separated in H
are dependent in every distribution P which factorizes over H. However, as in theorem 3.3, we
can use a weaker definition of completeness that does hold:

Let H be a Markov network structure. If X and Y are not separated given Z in H, then X and
Y are dependent given Z in some distribution P that factorizes over H.

Proor The proof is a constructive one: we construct a distribution P that factorizes over H
where X and Y are dependent. We assume, without loss of generality, that all variables are
binary-valued. If this is not the case, we can treat them as binary-valued by restricting attention
to two distinguished values for each variable.

By assumption, X and Y are not separated given Z in H; hence, they must be connected
by some unblocked trail. Let X = Uj—Us—...—Uy =Y be some minimal trail in the graph
such that, for all ¢, U; € Z, where we define a minimal trail in H to be a path with no shortcuts:
thus, for any 4 and j # i £ 1, there is no edge U;—U;. We can always find such a path: If we
have a nonminimal path where we have U;—U; for j > i + 1, we can always “shortcut” the
original trail, converting it to one that goes directly from U; to Uj.

For any ¢ = 1,...,k — 1, as there is an edge U;—U;+,, it follows that [7;, U;+; must both
appear in some clique C;. We pick some very large weight W, and for each i we define the
clique potential ¢;(C';) to assign weight W if U; = U, and weight 1 otherwise, regardless of
the values of the other variables in the clique. Note that the cliques C; for U;, Ujy1 and C; for
U;,Uj+1 must be different cliques: If C; = C}, then U; is in the same clique as U;, and we
have an edge U;—U;, contradicting the minimality of the trail. Hence, we can define the clique
potential for each clique C; separately. We define the clique potential for any other clique to
be uniformly 1.

We now consider the distribution P resulting from multiplying all of these clique potentials.
Intuitively, the distribution P(Uy,...,Uy) is simply the distribution defined by multiplying the
pairwise factors for the pairs U;, U; 1, regardless of the other variables (including the ones in
Z). One can verify that, in P(Uy,...,U), we have that X = U; and ¥ = U}, are dependent.
We leave the conclusion of this argument as an exercise (exercise 4.5). =

We can use the same argument as theorem 3.5 to conclude that, for almost all distributions
P that factorize over H (that is, for all distributions except for a set of measure zero in the
space of factor parameterizations) we have that Z(P) = Z(H).

Once again, we can view this result as telling us that our definition of Z(H) is the maximal
one. For any independence assertion that is not a consequence of separation in H, we can
always find a counterexample distribution P that factorizes over H.

Independencies Revisited

When characterizing the independencies in a Bayesian network, we provided two definitions:
the local independencies (each node is independent of its nondescendants given its parents),
and the global independencies induced by d-separation. As we showed, these two sets of
independencies are equivalent, in that one implies the other.
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So far, our discussion for Markov networks provides only a global criterion. While the global
criterion characterizes the entire setdindependencies induced by the network structure, a local
criterion is also valuable, since it allows us to focus on a smaller set of properties when examining
the distribution, significantly simpliying the process of finding an I-map for a distribution P.

Thus, it is natural to ask whether we can provide a local definition of the independencies
induced by a Markov network, andogously to the local independencies of Bayesian networks.
Surprisingly, as we now show, in the context of Markov networks, there are three different pos-
sible definitions of the independencis associated with the network structure — two local ones
and the global one in definition 43 While these definitions are related, they are equivalent
only for positive distributions. As ve will see, nonpositive distributions allow for deterministic
dependencies between the variables Such deterministic interactions can “fool” local indepen-
dence tests, allowing us to construt networks that are not I-maps of the distribution, yet the
local independencies hold. wao
Local Markov Assumptions

The first, and weakest, definition isbased on the following intuition: Whenever two variables
are directly connected, they have ihe potential of being directly correlated in a way that is not
mediated by other variables. Converely, when two variables are not directly linked, there must
be some way of rendering them condiionally independent. Specifically, we can require that X
and Y be independent given all otter nodes in the graph.

Let H be a Markov network. We defire the pairwise independencies associated with H to be:
L(H)={(X LY | X -{X)}) : X—Y ¢ H}. [

Using this definition, we can easily epresent the independencies in our Misconception example
using a Markov network: We simply connect the nodes up in exactly the same way as the
interaction structure between the siudents.

The second local definition is anwndirected analogue to the local independencies associated
with a Bayesian network. It is basedon the intuition that we can block all influences on a node
by conditioning on its immediate neighbors.

For a given graph M, we define theMarkov blanket of X in H, denoted MBy (X ), to be the
neighbors of X in H. We define thelocal independencies associated with H to be:

To(H) = {(X L X — {X} =MBy(X) | MBx(X)) : X € X}. -
In other words, the local independencies state that X is independent of the rest of the nodes
in the graph given its immediate neighbors. We will show that these local independence

assumptions hold for any distributin that factorizes over H, so that X's Markov blanket in H
truly does separate it from all othervariables.

Relationships between Markov Properties

We have now presented three sets il independence assertions associated with a network struc-
ture H. For general distributions, I,(K) is strictly weaker than Z;(7{), which in turn is strictly
weaker than Z(H). However, all thre definitions are equivalent for positive distributions.
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For any Markov network H, and any distribution P, we have that if P |= Ty(H) then P = I,(H).

The proof of this result is left as an exercise (exercise 4.8).

For any Markov network ‘H, and any distribution P, we have that if P = T(H) then P = Z,(H).

The proof of this result follows directly from the fact that if X and Y are not connected by an
edge, then they are necessarily separated by all of the remaining nodes in the graph.

The converse of these inclusion results holds only for positive distributions (see definition 2.5).
More specifically, if we assume the intersection property (equation (2.11)), all three of the Markov
conditions are equivalent.

Let P be a positive distribution. If P satisfies I,(H), then P satisfies T('H).

Proor We want to prove that for all disjoint sets X, Y, Z:
sep(X;Y | Z) =P (X LY | Z). (4.1)

The proof proceeds by descending induction on the size of Z.

The base case is | Z| = n —2; equation (4.]) follows immediately from the definition of Z, (7).

For the inductive step, assume that equation (4.1) holds for every Z’ with size |Z'| = k, and
let Z be any set such that |Z| = k — 1. We distinguish between two cases.

In the first case, X UZ UY = X. As |Z]| < n — 2, we have that either | X| > 2 or |Y| > 2.
Without loss of generality, assume that the latter holds; let A € ¥ and ¥’ = ¥ —{A}. From the
fact that sep,,(X;Y | Z), we also have that sep,,(X;Y" | Z) on one hand and sep, (X; A |
Z) on the other hand. As separation is monotonic, we also have that sep,, (X;Y' | Z U {A})
and sepy, (X;A | ZUY'). The separating sets Z U {A} and Z UY" are each at least size
|Z| + 1 = k in size, so that equation (4.1) applies, and we can conclude that P satisfies:

(X ALY Zuddl) & (X LA|Zw¥.
Because P is positive, we can apply the intersection property (equation (2.11)) and conclude that
PE(X LY'U{A}| Z), thatis, (X LY | Z).

The second case is where X UY U Z # X. Here, we might have that both X and ¥

are singletons. This case requires a similar argument that uses the induction hypothesis and
properties of independence. We leave it as an exercise (exercise 4.9). m

Our previous results entail that, for positive distributions, the three conditions are equivalent.

The following three statements are equivalent for a positive distribution P:
TP ':IE(H)
2 P |=I,(H).
3. P =1I(H).

This equivalence relies on the positivity assumption. In particular, for nonpositive distribu-
tions, we can provide examples of a distribution P that satisfies one of these properties, but not
the stronger one,
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Let P be any distribution over X = {X1,..., X, }; let X = {X{,..., X}, We now construct
a distribution P'(X,X') whose marginal over X1,..., X, is the same as P, and where X is
deterministically equal to X;. Let H be a Markov network over X, X' that contains no edges other
than X;—X!. Then, in P', X; is independent of the rest of the wariables in the network given
its neighbor X!, and similarly for X|; thus, H satisfies the local independencies for every node in
the network, Yet clearly H is not an I-map for P’', since H makes many independence assertions
regarding the X;’s that do not hold in P (or in P’). ]

Thus, for nonpositive distributions, the local independencies do not imply the global ones.
A similar construction can be used to show that, for nonpositive distributions, the pairwise
independencies do necessarily imply the local independencies.

Let P be any distribution over X = {X1,..., X, }, and now consider two auxiliary sets of vari-
ables X' and X", and define X* = X UX'UX". We now construct a distribution P'(X*) whose
marginal over X1,...,X, is the same as P, and where X! and X' are both deterministically

equal to X;. Let H be the empty Markov network over X*. We argue that this empty network
satisfies the pairwise assumptions for every pair of nodes in the network. For example, X; and
X! are rendered independent because X* — {X;, X!} contains X;'. Similarly, X; and X; are
independent given X|. Thus, H satisfies the pairwise independencies, but not the local or global
independencies. m

From Distributions to Graphs

Based on our deeper understanding of the independence properties associated with a Markov
network, we can now turn to the question of encoding the independencies in a given distribution
P using a graph structure. As for Bayesian networks, the notion of an I-map is not sufficient by
itself: The complete graph implies no independence assumptions and is hence an I-map for any
distribution. We therefore return to the notion of a minimal I-map, defined in definition 3.13,
which was defined broadly enough to apply to Markov networks as well.

How can we construct a minimal [-map for a distribution P? Our discussion in section 4.3.2
immediately suggests two approaches for constructing a minimal I-map: one based on the
pairwise Markov independencies, and the other based on the local independencies.

In the first approach, we consider the pairwise independencies. They assert that, if the edge
{X,Y} is not in H, then X and Y must be independent given all other nodes in the graph,
regardless of which other edges the graph contains. Thus, at the very least, to guarantee that H
is an [-map, we must add direct edges between all pairs of nodes X and Y such that

PH(XLY|X-{X,Y)). 4.2)

We can now define H to include an edge X—Y for all X,Y" for which equation (4.2) holds.

In the second approach, we use the local independencies and the notion of minimality. For
each variable X, we define the neighbors of X to be a minimal set of nodes Y that render X
independent of the rest of the nodes. More precisely, define:
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A set U is a Markov blanket of X in a distribution P if X € U and if U is a minimal set of
nodes such that

(X LX - {X}-U|U)eI(P) 43)
[ ]

We then define a graph H by introducing an edge {X,Y} for all X and all Y € MBp(X).
As defined, this construction is not unique, since there may be several sets U satisfying equa-
tion (4.3). However, theorem 4.6 will show that there is only one such minimal set. In fact, we
now show that any positive distribution P has a unique minimal I-map, and that both of these
constructions produce this I-map.

We begin with the proof for the pairwise definition:

Let P be a positive distribution, and let H be defined by introducing an edge { X, Y } for all X, Y
for which equation (4.2) holds. Then the Markov network H is the unique minimal I-map for P.

Proor The fact that H is an I-map for P follows immediately from fact that P, by construction,
satisfies Z,(*H), and, therefore, by corollary 4.1, also satisfies Z(). The fact that it is minimal
follows from the fact that if we eliminate some edge {X, Y} from H, the graph would imply the
pairwise independence (X LY | X — {X,Y}), which we know to be false for P (otherwise,
the edge would have been omitted in the construction of 7). The uniqueness of the minimal
I-map also follows trivially: By the same argument, any other I-map H’ for P must contain
at least the edges in H and is therefore either equal to H or contains additional edges and is
therefore not minimal. =

It remains to show that the second definition results in the same minimal I-map.

Let P be a positive distribution. For each node X, let MBp(X) be a minimal set of nodes U
satisfying equation (4.3). We define a graph H by introducing an edge {X,Y'} for all X and all
Y € MBp(X). Then the Markov network H is the unique minimal I-map for P.

The proof is left as an exercise (exercise 4.11).

Both of the techniques for constructing a minimal I-map make the assumption that the
distribution P is positive. As we have shown, for nonpositive distributions, neither the pairwise
independencies nor the local independencies imply the global one. Hence, for a nonpositive
distribution P, constructing a graph M such that P satisfies the pairwise assumptions for
does not guarantee that 7 is an I-map for P. Indeed, we can easily demonstrate that both of
these constructions break down for nonpositive distributions.

Consider a nonpositive distribution P over four binary variables A, B,C, D that assigns nonzero
probability only to cases where all four variables take on exactly the same value; for example, we
might have P(a',b*,c',d") = 0.5 and P(a®,t°,c°,d°) = 0.5. The graph H shown in figure 4.7
is one possible output of applying the local independence I-map construction algorithm to P: For
example, P = (A L C, D | B), and hence { B} is a legal choice for MBp(A). A similar analysis
shows that this network satisfies the Markov blanket condition for all nodes. However, it is not an
I-map for the distribution.
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Figure 4,7 An attempt at an I-map for anmpositive distribution P

If we use the pairwise independence I-map constrution algorithm for this distribution, the
network constructed is the empty network. For exampl the algorithm would not place an edge
between A and B, because P |= (A L B | C, D). Exadly the same analysis shows that no edges
will be placed into the graph. However, the resulting netwrk is not an I-map for P. =

Both these examples show that deterministic relations between variables can lead to failure
in the construction based on local and pairwise indepedence. Suppose that A and B are two
variables that are identical to each other and that both C' and D are variables that correlated
to both A and B so that (C' L D | A, B) holds. Since A is identical to B, we have that
both (4,D L C | B) and (B,D L C | A) hold. In cher words, it suffices to observe one of
these two variables to capture the relevant informationboth have about C' and separate C' from
D. In this case the Markov blanket of C' is not uniquly defined. This ambiguity leads to the
failure of both local and pairwise constructions. Clearly identical variables are only one way of
getting such ambiguities in local independencies. Oncewe allow nonpositive distribution, other
distributions can have similar problems.

Having defined the notion of a minimal I-map fora distribution P, we can now ask to
what extent it represents the independencies in P. Mire formally, we can ask whether every
distribution has a perfect map. Clearly, the answer is i, even for positive distributions:

Consider a distribution arising from a three-node Bayesin network with a v-structure, for example,
the distribution induced in the Student example over the nodes Intelligence, Difficulty, and Grade
(figure 3.3). In the Markov network for this distribution, we must clearly have an edge between I
and G and between D and G. Can we omit the edg between I and D? No, because we do
not have that (I L D | G) holds for the distribution; rher, we have the opposite: I and D are
dependent given G. Therefore, the only minimal I-map for this P is the fully connected graph,
which does not capture the marginal independence (I L D) that holds in P. =

This example provides another counterexample to (e strong version of completeness men-
tioned earlier. The only distributions for which separation is a sound and complete criterion for
determining conditional independence are those for which H is a perfect map.

Parameterization Revisited

Now that we understand the semantics and independence properties of Markov networks, we
revisit some alternative representations for the paramefrization of a Markov network.
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Figure 4.8 Different factor graphs for the same Markov network: (a) One factor graph over A, B, C,
with a single factor over all three variables. (b) An alternative factor graph, with three pairwise factors. (c)
The induced Markov network for both is a clique over 4, B, C.

(b) (c)

Finer-Grained Parameterization
Factor Graphs

A Markov network structure does not generally reveal all of the structure in a Gibbs param-
eterization. In particular, one cannot tell from the graph structure whether the factors in the
parameterization involve maximal cliques or subsets thereof. Consider, for example, a Gibbs
distribution P over a fully connected pairwise Markov network; that is, P is parameterized by a
factor for each pair of variables X, Y € X. The clique potential parameterization would utilize
a factor whose scope is the entire graph, and which therefore uses an exponential number of
parameters. On the other hand, as we discussed in section 4.2.1, the number of parameters
in the pairwise parameterization is quadratic in the number of variables. Note that the com-
plete Markov network is not redundant in terms of conditional independencies — P does not
factorize over any smaller network. Thus, although the finer-grained structure does not imply
additional independencies in the distribution (see exercise 4.6), it is still very significant.

An alternative representation that makes this structure explicit is a factor graph. A factor
graph is a graph containing two types of nodes: one type corresponds, as usual, to random
variables; the other corresponds to factors over the variables. Formally:

A factor graph F is an undirected graph containing two types of nodes: variable nodes (denoted as
ovals) and factor nodes (denoted as squares). The graph only contains edges between variable nodes
and factor nodes. A factor graph F is parameterized by a set of factors, where each factor node V,
is associated with precisely one factor ¢, whose scope is the set of variables that are neighbors of V4
in the graph. A distribution P factorizes over F if it can be represented as a set of factors of this
form. @

Factor graphs make explicit the structure of the factors in the network. For example, in a
fully connected pairwise Markov network, the factor graph would contain a factor node for each
of the (7) pairs of nodes; the factor node for a pair X;, X; would be connected to X; and
X; by contrast, a factor graph for a distribution with a single factor over X, ..., X, would
have a single factor node connected to all of X1,..., X, (see figure 4.8). Thus, although the
Markov networks for these two distributions are identical, their factor graphs make explicit the
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Figure 4.9 Energy functions for the Misconception example

difference in their factorization.

Log-Linear Models

Although factor graphs make certain types of structure more explicit, they still encode factors as
complete tables over the scope of the factor. As in Bayesian networks, factors can also exhibit
a type of context-specific structure — patterns that involve particular values of the variables.
These patterns are often more easily seen in terms of an alternative parameterization of the
factors that converts them into log-space.

More precisely, we can rewrite a factor ¢(D) as

¢(D) = exp(—e(D)),

where €(D) = —In@¢(D) is often called an energy function. The use of the word “energy”
derives from statistical physics, where the probability of a physical state (for example, a configu-
ration of a set of electrons), depends inversely on its energy. In this logarithmic representation,
we have

P(Xi,...,X»)  exp [—Zq(Dé)
=1

The logarithmic representation ensures that the probability distribution is positive. Moreover,
the logarithmic parameters can take any value along the real line.

Any Markov network parameterized using positive factors can be converted to a logarithmic
representation.

Figure 4.9 shows the logarithmic representation of the clique potential parameters in figure 4.1. We
can see that the “1" entries in the clique potentials translate into “0” entries in the energy functionm

This representation makes certain types of structure in the potentials more apparent. For
example, we can see that both €3(B,C) and €4(D, A) are constant multiples of an energy
function that ascribes 1 to instantiations where the values of the two variables agree, and 0 to
the instantiations where they do not.

We can provide a general framework for capturing such structure using the following notion:
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Let D be a subset of variables. We define a feature f(D) to be a function from D to IR. 8]

A feature is simply a factor without the nonnegativity requirement. One type of feature of
particular interest is the indicator feature that takes on value 1 for some values y € Val(D) and
0 otherwise.

Features provide us with an easy mechanism for specifying certain types of interactions more
compactly.

Consider a situation where Ay and A, each have ¢ values o', . . ., a’. Assume that our distribution
is such that we prefer situations where Ay and Ay take on the same value, but otherwise have no
preference. Thus, our energy function might have the following form:

(3 A= A,
e(A1,4z) = { 0 otherwise

Represented as a full factor, this clique potential requires ¢ alues. However, it can also be
represented as a log-linear function in terms of a feature f(A1, A2) that is an indicator function
for the event Ay = Ag. The energy function is then simply a constant multiple 3 of this feature. m

Thus, we can provide a more general definition for our notion of log-linear models:

A distribution P is a log-linear model over a Markov network H if it is associated with:

* a set of features F = { f1(Dn), ..., fu(Dg)}, where each D; is a complete subgraph in 'H,
* a sef of weights w1, ..., ws,

such that

1
P(Xl':“':Xn): Eexp

=1

_Zwifi(Di}] :

Note that we can have several features over the same scope, so that we can, in fact, represent a
standard set of table potentials. (See exercise 4.13.)

The log-linear model provides a much more compact representation for many distributions,
especially in situations where variables have large domains such as text (such as box 4.E).

Discussion

We now have three representations of the parameterization of a Markov network. The Markov
network denotes a product over potentials on cliques. A factor graph denotes a product of factors.
And a set of features denotes a product over feature weights. Clearly, each representation is finer-
grained than the previous one and as rich. A factor graph can describe the Gibbs distribution,
and a set of features can describe all the entries in each of the factors of a factor graph.
Depending on the question of interest, different representations may be more appropri-
ate. For example, a Markov network provides the right level of abstraction for discussing
independence queries: The finer-grained representations of factor graphs or log-linear
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models do not change the independence issertions made by the model. On the other
hand, as we will see in later chapters, facir graphs are useful when we discuss inference,
and features are useful when we discuss prameterizations, both for hand-coded models
and for learning.

#

Box 4.C — Concept: Ising Models and Bolunann Machines. One of the earliest types of Marke
network models is the Ising model, which firtmrose in statistical physics as a model for the energy

of a physical system involving a system of intmcting atoms. In these systems, each atom is associ-

ated with a binary-valued random variable ¥, € {+1, —1}, whose value defines the direction of
the atom's spin. The energy function associaid with the edges is defined by a particularly simple

parametric form:

eirj(zi,xj) = —wW; jTiT{ (4.4)

This energy is symmetric in Xi, X;; it makesa contribution of w; ; to the energy function when
X; = X; (so both atoms have the same spinland a contribution of —w; ; otherwise. Our model
also contains a set of parameters u; that encie individual node potentials; these bias individual
wariables to have one spin or another.

As usual, the energy function defines the folwing distribution:

P(§) = %EXD - Zwi,jmiﬂ:j = Z-J.r;.r!-

<] i

As we can see, when w; ; > 0 the model prirs to align the spins of the two atoms; in this case,
the interaction is called ferromagnetic. When;; < O the interaction is called antiferromagnetic.
When w; ; = 0 the atoms are non-interacting

Much work has gone into studying partiolar types of Ising models, attempting to answer a
variety of questions, usually as the number of ims goes to infinity. For example, we might ask the
probability of a configuration in which a maijuity of the spins are +1 or —1, versus the probability
of more mixed configurations. The answer wilis question depends heavily on the strength of the
interaction between the variables; so, we caiconsider adapting this strength (by multiplying all
weights by a temperature parameter) and astiig whether this change causes a phase transition in
the probability of skewed versus mixed configmtions. These questions, and many others, have been
investigated extensively by physicists, and themswers are known (in some cases even analytically)
for several cases.

Related to the Ising model is the Boltzman distribution; here, the variables are usually taken
to have values {0,1}, but still with the encgy form of equation (4.4). Here, we get a nonzero
contribution to the model from an edge (X;.X;) only when X; = X; = 1; however, the resulting
energy can still be reformulated in terms of mking model (exercise 4.12).

The popularity of the Boltzmann machinews primarily driven by its similarity to an activation
model for neurons. To understand the relatinship, we note that the probability distribution over
each variable X; given an assignment to is ndghbors is sigmoid(z) where

z= —(Z wt-‘j:cj) — w;.
J




 E

|abeling MRF

Ising model

Potts model

metric function

4.4, Parameterization Revisited 127

This function is a sigmoid of a weighted combination of X;'s neighbors, weighted by the strength and
direction of the connections between them. This is the simplest but also most popular mathematical
approximation of the function employed by a neuron in the brain. Thus, if we imagine a process
by which the network continuously adapts its assignment by resampling the value of each variable
as a stochastic function of its neighbors, then the ‘activation” probability of each variable resembles
a neuron’s activity. This model is a very simple variant of a stochastic, recurrent neural network.

e e S g e e T e R T N e e S T P
T e e oy e e Y A e T T S e I S s SO

Box 4.D — Concept: Metric MRFs. One important class of MRFs comprises those used for label-
ing. Here, we have a graph of nodes X, ..., X, related by a set of edges £, and we wish to assign
to each X; a in the space V = {v1,...,vx}. Each node, taken in isolation, has its preferences
among the possible labels. However, we also want to impose a soft “smoothness” constraint over the
graph, in that neighboring nodes should take “similar” values.

We encode the individual node preferences as node potentials in a pairwise MRF and the smooth-
ness preferences as edge potentials. For reasons that will become clear, it is traditional to encode
these models in negative log-space, using energy functions. As our objective in these models is
inevitably the MAP objective, we can also ignore the partition function, and simply consider the
energy function:

E(J’,‘l, i ,:cn) = ZQ‘(I:') -+ Z Ei,j(:ri,:l:j). (4.5)

i (i,5)€€
Our goal is then to minimize the energy:

arg min E(x,...,o,).
Tr1,....Fn
We now need to provide a formal definition for the intuition of “smoothness” described earlier.
There are many different types of conditions that we can impose; different conditions allow different
methods to be applied.

One of the simplest in this class of models is a slight variant of the Ising model, where we have
that, for any i, j:

E;',j (333',&."3') = { gi,j i: # ij’ [4.6]
Jor Ai,j = 0. In this model, we obtain the lowest possible pairwise energy (0) when two neighboring
nodes X;, X; take the same value, and a higher energy \; ; when they do not.

This simple model has been generalized in many ways. The Potts model extends it to the setting
of more than two labels. An even broader class contains models where we have a distance function
on the labels, and where we prefer neighboring nodes to have labels that are a smaller distance
apart. More precisely, a function i : V x V + [0, 00) is a metric if it satisfies:

o Reflexivity: p(vi,v) = 0 if and only if k = I;
o Symmetry: p(vy,vr) = p(vr, vi);

g
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¢1(A, B) 4 (B,C)
a’ B0 —4.4 B° P —3.61
a® bl 1.61 B (! +1
al pY -1 Bt P 0
et bt 23 | B 461

(a) (b)

Figure 4.10 Alternative but equivalent energy functions

¢ Triangle Inequality: p(vy,vi) + p(vi, vm) = (v, vm).

We say that p1 is a semimetric if it satisfies reflexivity and symmetry. We can now define a metric
MREF (or a semimetric MRF) by defining €; j (v, vi) = p(vi,v) for all i, j, where y is a metric
(semimetric). We note that, as defined, this model assumes that the distance metric used is the
same for all pairs of variables. This assumption is made because it simplifies notation, it often
holds in practice, and it reduces the number of parameters that must be acquired. It is not required
for the inference algorithms that we present in later chapters. Metric interactions arise in many
applications, and play a particularly important role in computer vision (see box 4.B and box 13.B).
For example, one common metric used is some form of truncated p-norm (usuallyp =1 orp = 2);

€(zi, z;) = min(c||z; — z;||p, distmax)- (4.7)

s s i T R i e o s S Y S 5 o G O S o A e

Overparameterization

Even if we use finer-grained factors, and in some cases, even features, the Markov network
parameterization is generally overparameterized. That is, for any given distribution, there are
multiple choices of parameters to describe it in the model. Most obviously, if our graph is a
single clique over n binary variables X1, ..., X, then the network is associated with a clique
potential that has 2" parameters, whereas the joint distribution only has 2" — 1 independent
parameters.

A more subtle point arises in the context of a nontrivial clique structure. Consider a pair
of cliques {A, B} and {B,C}. The energy function €;(A, B) (or its corresponding clique
potential) contains information not only about the interaction between A and B, but also about
the distribution of the individual variables 4 and B. Similarly, e2(B, C) gives us information
about the individual variables B and C. The information about B can be placed in either of
the two cliques, or its contribution can be split between them in arbitrary ways, resulting in
many different ways of specifying the same distribution.

Consider the energy functions ¢1(A, B) and €3(B,C) in figure 4.9. The pair of energy functions
shown in figure 4.10 result in an equivalent distribution: Here, we have simply subtracted 1 from
e1(A, B) and added 1 to ez(B, C) for all instantiations where B = b°. It is straightforward to
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check that this results in an identical distribution to that of figure 4.9. In instances where B # b°
the energy function returns exactly the same value as before. In cases where B = b°, the actual
values of the energy functions have changed. However, because the sum of the energy functions on
each instance is identical to the original sum, the probability of the instance will not change. m

Intuitively, the standard Markov network representation gives us too many places to account
for the influence of variables in shared cliques. Thus, the same distribution can be represented
as a Markov network (of a given structure) in infinitely many ways. It is often useful to pick one
of this infinite set as our chosen parameterization for the distribution.

Canonical Parameterization

The canonical parameterization provides one very natural approach to avoiding this ambiguity
in the parameterization of a Gibbs distribution P. This canonical parameterization requires that
the distribution P be positive. It is most convenient to describe this parameterization using
energy functions rather then clique potentials. For this reason, it is also useful to consider a log-
transform of P: For any assignment £ to X', we use £(£) to denote In P(£). This transformation
is well defined because of our positivity assumption.

The canonical parameterization of a Gibbs distribution over H is defined via a set of energy
functions over all non-empty cliques. Thus, for example, the Markov network in figure 4.4b
would have energy functions for the two cliques {A, B, D} and {B, C, D}, energy functions
for all possible pairs of variables except the pair {A,C} (a total of five pairs), and energy
functions for all four singleton sets.

At first glance, it appears that we have only increased the number of parameters in the
specification. However, as we will see, this approach uniquely associates the interaction param-
eters for a subset of variables with that subset, avoiding the ambiguity described earlier. As a
consequence, many of the parameters in this canonical parameterization are often zero.

The canonical parameterization is defined relative to a particular fixed assignment £* =
(z1,...,x) to the network variables X'. This assignment can be chosen arbitrarily. For any
subset of variables Z, and any assignment @ to some subset of X' that contains Z, we define
the assignment xz to be (Z), that is, the assignment in & to the variables in Z. Conversely,
we define £* , to be *(X — Z), that is, the assignment in £* to the variables outside Z. We
can now construct an assignment (xz,£* ) that keeps the assignments to the variables in Z
as specified in x, and augments it using the default values in £*.

The canonical energy function for a clique D is now defined as follows:

ep(d) = Y (-1)!P~2ly(dz, ¢ 5), 4.8)
ZCD

where the sum is over all subsets of D, including D itself and the empty set (). Note that all
of the terms in the summation have a scope that is contained in D, which in turn is part of a
clique, so that these energy functions are legal relative to our Markov network structure.

This formula performs an inclusion-exclusion computation. For a set {A, B,C'}, it first
subtracts out the influence of all of the pairs: {A, B}, {B,C}, and {C, A}. However, this
process oversubtracts the influence of the individual variables. Thus, their influence is added
back in, to compensate. More generally, consider any subset of variables Z C D. Intuitively, it

e
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€i(4, B) €3(B,C) e5(C, D) €3(D, A)
a® B 0 | 80 0 A d° 0 d® qo° 0
a® b 0 b 0 & 4t 9.21 d® o' 9.21
al 0 bt P 0 | & d° 0 ' a° 0
al b 409 | b ' 921 l ¢t dt 0 | d' o' 184

&(4) &(B) &) D) &5(0)

a® 0 bo 0 | & 0| d° 0 B

at —-801 | ¥ —64 | ¢ 0 | d' -9.21 ‘

Figure 411 Canonical energy function for the Misconception example

makes a “contribution” once for every subset U 2 Z. Except for U = D, the number of times
that Z appears is even — there is an even number of subsets U 2 Z — and the number of
times it appears with a positive sign is equal to the number of times it appears with a negative
sign. Thus, we have effectively eliminated the net contribution of the subsets from the canonical
energy function.

Let us consider the effect of the canonical transformation on our Misconception network.

Let us choose (a®,b°,c%, d°) as our arbitrary assignment on which to base the canonical param-
eterization. The resulting energy functions are shown in figure 4.11. For example, the energy value
ei{a',b') was computed as follows:

£(a, b, 0, d°) — £(at, B9, °, d°) — £(a®, b1, 0, d°) + £(a, B9, &, d°) =
—13.49 — —-11.18 — —9.58 + —3.18 = 4.09

Note that many of the entries in the energy functions are zero. As discussed earlier, this phenomenon
is fairly general, and occurs because we have accounted for the influence of small subsets of variables
separately, leaving the larger factors to deal only with higher-order influences. We also note that these
canonical parameters are not very intuitive, highlighting yet again the difficulties of constructing a
reasonable parameterization of a Markov network by hand. =

This canonical parameterization defines the same distribution as our original distribution P:

Let P be a positive Gibbs distribution over H, and let €*(D;) for each clique D; be defined as
specified in equation (4.8). Then

P(€) = exp [—Zea (&(Dm} ;

The proof for the case where H consists of a single clique is fairly simple, and it is left as an
exercise (exercise 4.4). The general case follows from results in the next section.

The canonical parameterization gives us the tools to prove the Hammersley-Clifford theorem,
which we restate for convenience.
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Let P be a positive distribution over X, and H a Markov network graph over X. If H is an I-map
for P, then P is a Gibbs distribution over H.

Proor To prove this result, we need to show the existence of a Gibbs parameterization for
any distribution P that satisfies the Markov assumptions associated with H. The proof is
constructive, and simply uses the canonical parameterization shown in section 4.4.2. Given P,
we define an energy function for all subsets D of nodes in the graph, regardless of whether
they are cliques in the graph. This energy function is defined exactly as in equation (4.8),
relative to some specific fixed assignment £* used to define the canonical parameterization. The
distribution defined using this set of energy functions is P: the argument is identical to the
proof of theorem 4.7, for the case where the graph consists of a single clique (see exercise 4.4).

It remains only to show that the resulting distribution is a Gibbs distribution over . To show
that, we need to show that the factors e*(.D) are identically 0 whenever D is not a clique in
the graph, that is, whenever the nodes in D do not form a fully connected subgraph. Assume
that we have X,Y € D such that there is no edge between X and Y. For this proof, it helps
to introduce the notation

G—ZI:E] = {a:Z': giZ)
Plugging this notation into equation (4.8), we have that:
ep(d) = > (-1)P~Zl¢(oz[d)).
ZCD

We now rearrange the sum over subsets Z into a sum over groups of subsets. Let W C
D—{X,Y} then W, WU {X}, WU{Y}, and WU {X,Y} are all subsets of Z. Hence,
we can rewrite the summation over subsets of D as a summation over subsets of D — {X, Y }:

ep(d) = Y (-yiPixY-w (4.9)
WCD-{X,Y}
(blow [d]) = f(O'Wu{X}[d]) 2 B(UWU{Y}[d]) + E(UWU{X.Y}[d]))-

Now consider a specific subset W in this sum, and let u* be £*(X — D) — the assignment
to X — D in £&. We now have that:

P(z,y, w,u*)
P(z,y*, w,u*)

Uowuix.yild]) — lowuixyld]) In

Py | z,w,u*)P(z,w,u*)

== (]
" Py [z, w, w)P(z, w,u*)

Py | z*,w,u*)P(z,w,u*)
P(y* | z*,w,u*)P(x, w, u*)
Py | z*,w,u*)P(z*, w, u*)

= In

= In

Ply* | z*, w,u*)P(z*, w, u*)
P(z*,y,w,u*)

P(I*? y*i w! u*)

= Llowuiyyld])) — tlow(d]),

= In
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where the third equality is a consequence of the fact that X and Y are not connected directly
by an edge, and hence we have that P |= (X LY | X — {X, Y'}). Thus, we have that each
term in the outside summation in equation (4.9) adds to zero, and hence the summation as a
whole is also zero, as required. ]

For positive distributions, we have already shown that all three sets of Markov assumptions are

equivalent; putting these results together with theorem 4.1 and theorem 4.2, we obtain that, for

&= positive distributions, all four conditions — factorization and the three types of Markov
assumptions — are all equivalent.

4.4.2,2 Eliminating Redundancy

An alternative approach to the issue of overparameterization is to try to eliminate it entirely. We
can do so in the context of a feature-based representation, which is sufficiently fine-grained to
allow us to eliminate redundancies without losing expressive power. The tools for detecting and
eliminating redundancies come from linear algebra.
linear We say that a set of features f, ..., fx is linearly dependent if there are constants ag, a1, . - - , Q,
dependence not all of which are 0, so that for all &

ag+ Y aufi(§) =0.

This is the usual definition of linear dependencies in linear algebra, where we view each feature
as a vector whose entries are the value of the feature in each of the possible instantiations.

Example 4.13 Consider again the Misconception example. We can encode the log-factors in example 4.9 as a set
of features by introducing indicator features of the form:

1 A=a,B=5b
fap(A,B) = { 0 otherwise.

Thus, to represent €1(A, B), we introduce four features that correspond to the four entries in the
energy function. Since A, B take on exactly one of these possible four values, we have that

fao‘bu(A, B) -4 fa”,fﬂ (A B) + fal b0 (A, B) + fa1 bl (A., B} =1,

Thus, this set of features is linearly dependent. ]

Example 4.14 Now consider also the features that capture e2(B, C) and their interplay with the features that
capture €1 (A, B). We start by noting that the sum fgo po(A, B) + fa1 po (A, B) is equal to 1 when
B = ° and 0 otherwise. Similarly, fyo .0(B,C) + fy 01 (B,C) is also an indicator for B = 8°.
Thus we get that

fao,bO(As B) 2 fa“b“{A: B) . fbﬂ,cU(B! C) - fbn,cl(B!C) = 0.

And so these four features are linearly dependent. =

As we now show, linear dependencies imply non-unique parameterization.




Proposition 4.5

redundant

Proposition 4.6

Example 4.15

4.4, Parameterization Revisited 133

Let f1,..., fx be a set of features with weights w = {wy,...,wy} that form a log-linear repre-
sentation of a distribution P. If there are coefficients cg, a1, . . ., ay, such that for all £
ao+ Y aifi(€) =0 4.10)
i
then the log-linear model with weights w' = {w; + a1, ..., wy + ax} also represents P.

Proor Consider the distribution

Py (€)  exp {— S (wi + am-)fz-(é)} -

1

Using equation (4.10) we see that

= (wi + ) fi(€) = a0 — Zwifi(f)»
Thus,

Py (€) ox €% exp {— Zwéfi@)} x P(&).

We conclude that P, (£) = P(£). ]

Motivated by this result, we say that a set of linearly dependent features is redundant. A
nonredundant set of features is one where the features are not linearly dependent on each
other. In fact, if the set of features is nonredundant, then each set of weights describes a unique
distribution.

Let f1,. .., fx be a set of nonredundant features, and let w, w' € IR*. Ifw # w' then P,, # Py

Can we construct a nonredundant set of features for the Misconception example? We can determine
the number of nonredundant features by building the 16 x 16 matrix of the values of the 16 features
(four factors with four features each) in the 16 instances of the joint distribution. This matrix has
rank of 9, which implies that a subset of 8 features will be a nonredundant subset. In fact, there
are several such subsets. In particular, the canonical parameterization shown in figure 4.11 has nine
features of nonzero weight, which form a nonredundant parameterization. The equivalence of the
canonical parameterization (theorem 4.7) implies that this set of features has the same expressive
power as the original set of features. To verify this, we can show that adding any other feature will
lead to a linear dependency. Consider, for example, the feature fq: yo. We can verify that

fal.bo +fal,bl =, fﬂl = 0.

Similarly, consider the feature f,o yo. Again we can find a linear dependency on other features:

fao,bo + fal + fbl - fal?bl =],

Using similar arguments, we can show that adding any of the original features will lead to redun-
dancy. Thus, this set of features can represent any parameterization in the original model. |
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Bayesian Networks and Markov Networks

We have now described two graphical representation languages: Bayesian networks and Markoy
networks. Example 3.8 and example 4.8 show that these two representations are incomparable
as a language for representing independencies: each can represent independence constraints
that the other cannot. In this section, we strive to provide more insight about the relationship
between these two representations.

From Bayesian Networks to Markov Networks

Let us begin by examining how we might take a distribution represented using one of these
frameworks, and represent it in the other. One can view this endeavor from two differeni
perspectives: Given a Bayesian network 13, we can ask how to represent the distribution Py
as a parameterized Markov network; or, given a graph G, we can ask how to represent the
independencies in G using an undirected graph H. In other words, we might be interested
in finding a minimal I-map for a distribution Pg, or a minimal I-map for the independencies
Z(H). We can see that these two questions are related, but each perspective offers its own
insights.

Let us begin by considering a distribution Pg, where B is a parameterized Bayesian network
over a graph G. Importantly, the parameterization of B can also be viewed as a parameterization
for a Gibbs distribution: We simply take each CPD P(X; | Pay,) and view it as a factor of
scope X;, Pax,. This factor satisfies additional normalization properties that are not generally
true of all factors, but it is still a legal factor. This set of factors defines a Gibbs distribution,
one whose partition function happens to be 1.

What is more important, a Bayesian network conditioned on evidence E = e also induces
a Gibbs distribution: the one defined by the original factors reduced to the context E = e,

Let B be a Bayesian network over X and E = e an observation. Let W = X — E. Then
Pg(W | e) is a Gibbs distribution defined by the factors ® = {¢x, } x,cx, where

¢x, = Ps(Xi | Pax,)[E =e].
The partition function for this Gibbs distribution is P(e).

The proof follows directly from the definitions. This result allows us to view any Bayesian
network conditioned as evidence as a Gibbs distribution, and to bring to bear techniques
developed for analysis of Markov networks.

What is the structure of the undirected graph that can serve as an I-map for a set of factors
in a Bayesian network? In other words, what is the I-map for the Bayesian network structure
G? Going back to our construction, we see that we have created a factor for each family of X,
containing all the variables in the family. Thus, in the undirected I-map, we need to have an
edge between X; and each of its parents, as well as between all of the parents of X;. This
observation motivates the following definition:

The moral graph M[G] of a Bayesian network structure G over X is the undirected graph over X
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that contains an undirected edge between X and Y if. (a) there is a directed edge between them
(in either direction), or (b)) X and Y are both parents of the same node.! =

For example, figure 4.6a shows the moralized graph for the B*“" network of figure 3.3.
The preceding discussion shows the following result:

Let G be a Bayesian network structure. Then for any distribution Pg such that B is a parameteri-
zation of G, we have that M([G] is an I-map for Pg.

One can also view the moralized graph construction purely from the perspective of the
independencies encoded by a graph, avoiding completely the discussion of parameterizations of
the network.

Let G be any Bayesian network graph. The moralized graph M|[G] is a minimal I-map for G.

Proor We want to build a Markov network H such that Z(H) C Z(G), that is, that H is an
I-map for G (see definition 3.3). We use the algorithm for constructing minimal [-maps based
on the Markov independencies. Consider a node X in X our task is to select as X's neighbors
the smallest set of nodes U that are needed to render X independent of all other nodes in the
network. We define the Markov blanket of X in a Bayesian network G, denoted MBg(X), to be
the nodes consisting of X's parents, X's children, and other parents of X's children. We now
need to show that MBg(X') d-separates X from all other variables in G; and that no subset of
MBg(X) has that property. The proof uses straightforward graph-theoretic properties of trails,
and it is left as an exercise (exercise 4.14). m

Now, let us consider how “close” the moralized graph is to the original graph G. Intuitively,
the addition of the moralizing edges to the Markov network H leads to the loss of inde-
pendence information implied by the graph structure. For example, if our Bayesian network
G has the form X — Z « Y, with no edge between X and Y/, the Markov network M |G] loses
the information that X and Y are marginally independent (not given Z). However, information
is not always lost. Intuitively, moralization causes loss of information about independencies only
when it introduces new edges into the graph. We say that a Bayesian network G is moral if it
contains no immoralities (as in definition 3.11); that is, for any pair of variables X,V that share
a child, there is a covering edge between X and Y. It is not difficult to show that:

If the directed graph G is moral, then its moralized graph M|G] is a perfect map of G.

Proor Let H = M|[G]. We have already shown that Z(H) C Z(G), so it remains to show the
opposite inclusion. Assume by contradiction that there is an independence (X LY | Z) €
Z(G) which is not in Z(H). Thus, there must exist some trail from X to ¥ in H which is
active given Z. Consider some such trail that is minimal, in the sense that it has no shortcuts.
As H and G have precisely the same edges, the same trail must exist in G. As, by assumption, it
cannot be active in G given Z, we conclude that it must contain a v-structure X; — X5 «— X3,
However, because G is moralized, we also have some edge between X; and X3, contradicting
the assumption that the trail is minimal. =

1. The name moralized graph originated because of the supposed “morality” of marrying the parents of a node.

i
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Thus, a moral graph G can be converted to a Markov network without losing independence
assumptions. This conclusion is fairly intuitive, inasmuch as the only independencies in G that
are not present in an undirected graph containing the same edges are those corresponding to
v-structures. But if any v-structure can be short-cut, it induces no independencies that are not
represented in the undirected graph.

We note, however, that very few directed graphs are moral. For example, assume that we have
a v-structure X — Y « Z, which is moral due to the existence of an arc X — Z. If Z has
another parent W, it also has a v-structure X — Z « W, which, to be moral, requires some
edge between X and W. We return to this issue in section 4.5.3.

Soundness of d-Separation

The connection between Bayesian networks and Markov networks provides us with the tools for
proving the soundness of the d-separation criterion in Bayesian networks.

The idea behind the proof is to leverage the soundness of separation in undirected graphs, a
result which (as we showed) is much easier to prove. Thus, we want to construct an undirected
graph M such that active paths in  correspond to active paths in G. A moment of thought
shows that the moralized graph is not the right construct, because there are paths in the
undirected graph that correspond to v-structures in G that may or may not be active. For
example, if our graph G is X — Z « Y and Z is not observed, d-separation tells us that X
and Y are independent; but the moralized graph for G is the complete undirected graph, which
does not have the same independence.

Therefore, to show the result, we first want to eliminate v-structures that are not active, so as to
remove such cases. To do so, we first construct a subgraph where remove all barren nodes from
the graph, thereby also removing all v-structures that do not have an observed descendant. The
elimination of the barren nodes does not change the independence properties of the distribution
over the remaining variables, but does eliminate paths in the graph involving v-structures that
are not active. If we now consider only the subgraph, we can reduce d-separation to separation
and utilize the soundness of separation to show the desired result.

We first use these intuitions to provide an alternative formulation for d-separation. Recall
that in definition 2.14 we defined the upward closure of a set of nodes U in a graph to be
U U Ancestorsy. Letting U™ be the closure of a set U, we can define the network induced over
U*; importantly, as all parents of every node in U™ are also in U™, we have all the variables
mentioned in every CPD, so that the induced graph defines a coherent probability distribution.
We let G7[U] be the induced Bayesian network over U and its ancestors.

Let X,Y, Z be three disjoint sets of nodes in a Bayesian network G. Let U = X UY U Z, and
let ' = G*[U) be the induced Bayesian network over U U Ancestorsys. Let H be the moralized
graph M[G']. Then d-sepg(X;Y | Z) if and only if sep, (XY | Z).

To gain some intuition for this result, consider the Bayesian network G of figure 4.12a (which
extends our Student network). Consider the d-separation query d-sepg(D;I | L). In this case,
U = {D, I, L}, and hence the moralized graph M[G¥[U]] is the graph shown in figure 4.12b,
where we have introduced an undirected moralizing edge between D and I. In the resulting graph,
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(a) (b) ()

Figure 4,12 Example of alternative definition of d-separation based on Markov networks.
(a) A Bayesian network G. (b) The Markov network M[/ICY[D, I, L]]. (c) The Markov network
MIK*[D, I, A, S]]

D and I are not separated given L, exactly as we would have concluded using the d-separation
procedure on the original graph.

On the other hand, consider the d-separation query d-sepg(D;1 | S, A). In this case, U =
{D,I,5,A}. Because D and I are not spouses in G [U|, the moralization process does not add
an edge between them. The resulting moralized graph is shown in figure 412c. As we can see, we
have that sep g+ (D I | S, A), as desired. =

The proof for the general case is similar and is left as an exercise (exercise 4.15).
With this result, the soundness of d-separation follows easily. We repeat the statement of
theorem 3.3:

If a distribution Py factorizes according to G, then G is an I-map for P.

Proor As in proposition 410, let U = X UY U Z, let U™ = U U Ancestorsy, let Gy~ = G+ [U]
be the induced graph over U™, and let H be the moralized graph M [Gys<]. Let Py- be the
Bayesian network distribution defined over Gy;- in the obvious way: the- CPD for any variable
in U" is the same as in B. Because U™ is upwardly closed, all variables used in these CPDs are
in U™,

Now, consider an independence assertion (X L Y | Z) € Z(G); we want to prove that
Pg = (X LY | Z). By definition 3.7, if (X LY | Z) € Z(G), we have that d-sepg(X;Y |
Z). 1t follows that sep, (X;Y | Z), and hence that (X LY | Z) € I(H). Py- is a Gibbs
distribution over H, and hence, from theorem 4.1, Py- = (X L Y | Z). Using exercise 3.8, the
distribution Py« (U™) is the same as P(U™). Hence, it follows also that Ps = (X LY | Z),
proving the desired result. m
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(a) (b)

Figure 413 Minimal I-map Bayesian networks for a nonchordal Markov network. (a) A Markov
network H; with a loop. (b) A minimal I-map G, Bayesian network for H.

From Markov Networks to Bayesian Networks

The previous section dealt with the conversion from a Bayesian network to a Markov network.
We now consider the converse transformation: finding a Bayesian network that is a minimal
I-map for a Markov network. It turns out that the transformation in this direction is significantly
more difficult, both conceptually and computationally. Indeed, the Bayesian network that is a
minimal I-map for a Markov network might be considerably larger than the Markov network.

Consider the Markov network structure Hg of figure 4.13a, and assume that we want to find a
Bayesian network I-map for He. As we discussed in section 3.4.1, we can find such an I-map
by enumerating the nodes in X in some ordering, and define the parent set for each one in turn
according to the independencies in the distribution. Assume we enumerate the nodes in the order
A,B,C,D,E,F. The process for A and B is obvious. Consider what happens when we add C.
We must, of course, introduce A as a parent for C. More interestingly, however, C'is not independent
of B given A; hence, we must also add B as a parent for C. Now, consider the node D. One of its
parents must be B. As D is not independent of C given B, we must add C' as a parent for B. We
do not need to add A, as D is independent of A given B and C. Similarly, E's parents must be C
and D. Overall, the minimal Bayesian network I-map according to this ordering has the structure
Gy shown in figure 4.13b. &

A quick examination of the structure G shows that we have added several edges to the graph,
resulting in a set of triangles crisscrossing the loop. In fact, the graph G in figure 413b is
chordal: all loops have been partitioned into triangles.

One might hope that a different ordering might lead to fewer edges being introduced. Un-
fortunately, this phenomenon is a general one: any Bayesian network I-map for this Markov
network must add triangulating edges into the graph, so that the resulting graph is chordal (see
definition 2.24). In fact, we can show the following property, which is even stronger:

Let H be a Markov network structure, and let G be any Bayesian network minimal I-map for H.
Then G can have no immoralities (see definition 3.11).
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Proor Let X1,..., X, be a topological ordering for G. Assume, by contradiction, that there is
some immorality X; — X; < X} in G such that there is no edge between X; and Xj; assume
(without loss of generality) that i < k& < j.

Owing to minimality of the I-map G, if X; is a parent of X, then X; and X, are not
separated by X;'s other parents. Thus, H necessarily contains one or more paths between X;
and X; that are not cut by X} (or by X;'s other parents). Similarly,  necessarily contains one
or more paths between X and X; that are not cut by X; (or by X;'s other parents).

Consider the parent set U that was chosen for X},. By our previous argument, there are one
or more paths in H between X; and X} via X;. As i < k, and X; is not a parent of X}, (by
our assumption), we have that U must cut all of those paths. To do so, U must cut either all of
the paths between X; and X, or all of the paths between X; and Xj: As long as there is at
least one active path from X; to X; and one from X; to X, there is an active path between
X; and X that is not cut by U. Assume, without loss of generality, that U cuts all paths
between X; and X} (the other case is symmetrical). Now, consider the choice of parent set for
X, and recall that it is the (unique) minimal subset among X1,..., X;_; that separates X
from the others. In a Markov network, this set consists of all nodes in X7,..., X j—1 that are
the first on some uncut path from X;. As U separates X, from X;, it follows that X}, cannot
be the first on any uncut path from X;, and therefore X} cannot be a parent of X. This result
provides the desired contradiction. m

Because any nontriangulated loop of length at least 4 in a Bayesian network graph necessarily
contains an immorality, we conclude:

Let H be a Markov network structure, and let G be any minimal I-map for H. Then G is necessarily
chordal.

Thus, the process of turning a Markov network into a Bayesian network requires that we
add enough edges to a graph to make it chordal. This process is called triangulation. As in
the transformation from Bayesian networks to Markov networks, the addition of edges leads
to the loss of independence information. For instance, in example 4.17, the Bayesian network
e in figure 4.13b loses the information that C' and D are independent given A and F. In
the transformation from directed to undirected models, however, the edges added are only the
ones that are, in some sense, implicitly there — the edges required by the fact that each factor
in a Bayesian network involves an entire family (a node and its parents). By contrast, the
transformation from Markov networks to Bayesian networks can lead to the introduction of a
large number of edges, and, in many cases, to the creation of very large families (exercise 4.16),

Chordal Graphs

We have seen that the conversion in either direction between Bayesian networks to Markov
networks can lead to the addition of edges to the graph and to the loss of independence
information implied by the graph structure. It is interesting to ask when a set of independence
assumptions can be represented perfectly by both a Bayesian network and a Markov network. It
turns out that this class is precisely the class of undirected chordal graphs.

The proof of one direction is fairly straightforward, based on our earlier results.
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Let H be a nonchordal Markov network. Then there is no Bayesian network G which is a perfect
map for H (that is, such that T(H) = Z(G)).

Prooe The proof follows from the fact that the minimal I-map for G must be chordal. Hence,
any I-map G for Z(H) must include edges that are not present in H. Because any additional
edge eliminates independence assumptions, it is not possible for any Bayesian network G to
precisely encode Z(H). =

To prove the other direction of this equivalence, we first prove some important properties of
chordal graphs. As we will see, chordal graphs and the properties we now show play a central
role in the derivation of exact inference algorithms for graphical models. For the remainder
of this discussion, we restrict attention to connected graphs; the extension to the general case
is straightforward. The basic result we show is that we can decompose any connected chordal
graph H into a tree of cliques — a tree whose nodes are the maximal cliques in H — so that the
structure of the tree precisely encodes the independencies in H. (In the case of disconnected
graphs, we obtain a forest of cliques, rather than a tree.)

We begin by introducing some notation. Let H be a connected undirected graph, and let
C,...,C} be the set of maximal cliques in H. Let 7 be any tree-structured graph whose
nodes correspond to the maximal cliques Ci,...,Cg. Let C;,C; be two cliques in the tree
that are directly connected by an edge; we define S; ; = C;NCj to be a sepset between C;
and Cj. Let Wiz (W) be all of the variables that appear in any clique on the C;
(C';) side of the edge. Thus, each edge decomposes X into three disjoint sets: W (i ;) — S
W<[j,i) - S?’.,j: and Si‘j.

We say that a tree T is a clique tree for H if:

o each node corresponds to a clique in H, and each maximal clique in'H is a node in T;

o each sepset S; j separates W . ; 5y and W <(; 4y in H. =

Note that this definition implies that each separator S, ; renders its two sides conditionally
independent in H.

Consider the Bayesian network graph Gy in figure 4.13b. Since it contains no immoralities, its
moralized graph M), is simply the same graph, but where all edges have been made undirected.
As Gy is chordal, so is Hj. The clique tree for Hj is simply a chain {A,B,C} — {B,C,D} —
(C,D,E} — {D,E,F}, which clearly satisfies the separation requirements of the clique tree
definition. =

Every undirected chordal graph H has a clique tree T

Proor We prove the theorem by induction on the number of nodes in the graph. The base case
of a single node is trivial. Now, consider a chordal graph H of size > 1. If H consists of a
single clique, then the theorem holds trivially. Therefore, consider the case where we have at
least two nodes X1, X» that are not connected directly by an edge. Assume that X; and X>
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are connected, otherwise the inductive step holds trivially. Let .S be a minimal subset of nodes
that separates X; and X5.

The removal of the set S breaks up the graph into at least two disconnected components —
one containing X1, another containing X5, and perhaps additional ones. Let W, W5 be some
partition of the variables in X — S into two disjoint components, such that W ; encompasses
the connected component containing X;. (The other connected components can be assigned to
W1 or W arbitrarily.) We first show that S must be a complete subgraph. Let Z;, Z3 be any
two variables in S. Due to the minimality of S, each Z; must lie on a path between X; and
X, that does not go through any other node in S. (Otherwise, we could eliminate Z; from S
while still maintaining separation.) We can therefore construct a minimal path from Z; to Zs
that goes only through nodes in W by constructing a path from Z; to X, to Z; that goes
only through W, and by eliminating any shortcuts. We can similarly construct a minimal path
from Z, to Z, that goes only through nodes in W3, The two paths together form a cycle of
length > 4. Because of chordality, the cycle must have a chord, which, by construction, must
be the edge Z; —2o.

Now consider the induced graph H; = H[W ;U S]. As Xo & H;, this induced graph is
smaller than H. Moreover, H; is chordal, so we can apply the inductive hypothesis. Let 77 be
the clique tree for H;. Because S is a complete connected subgraph, it is either a maximal
clique or a subset of some maximal clique in H;. Let Cy be some clique in 7; containing
S (there may be more than one such clique). We can similarly define Hy and Cy for X5, If
neither C'; nor C5 is equal to .S, we construct a tree 7 that contains the union of the cliques
in 7; and 73, and connects C; and Cs by an edge. Otherwise, without loss of generality, let
C1 = S; we create 7 by merging 77 minus C; into 73, making all of C's neighbors adjacent
to C5 instead.

It remains to show that the resulting structure is a clique tree for H. First, we note that
there is no clique in A that intersects both W, and W,; hence, any maximal clique in H is
a maximal clique in either H; or Hy (or both in the possible case of S), so that all maximal
cliques in ‘H appear in 7. Thus, the nodes in 7 are precisely the maximal cliques in H.
Second, we need to show that any S; ; separates W (; ;) and W (; ;). Consider two variables
X € Wiy and Y € W ;. First, assume that X, Y € Hj; as all the nodes in H; are on
the 7; side of the tree, we also have that S; ; C H;. Any path between two nodes in H; that
goes through W can be shortcut to go only through H,. Thus, if §; ; separates X, Y in H;,
then it also separates them in H. The same argument applies for X, Y € Hs,. Now, consider
XeWiandY € W, If S, ; = 8, the result follows from the fact that S separates W; and
W,. Otherwise, assume that S; ; is in 73, on the path from X to C;. In this case, we have
that S; ; separates X from S, and S separates S; ; from Y. The conclusion now follows from
the transitivity of graph separation.

We have therefore constructed a clique tree for H, proving the inductive claim. @

Using this result, we can show that the independencies in an undirected graph H can be
captured perfectly in a Bayesian network if and only if H is chordal.

Let H be a chordal Markov network. Then there is a Bayesian network G such that T(H) = Z(G).

Proor Let 7 be the clique tree for H, whose existence is guaranteed by theorem 4.12. We can
select an ordering over the nodes in the Bayesian network as follows. We select an arbitrary
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clique C; to be the root of the clique tree, and then order the cliques C,...,C) using any
topological ordering, that is, where cliques closer to the root are ordered first. We now order the
nodes in the network in any ordering consistent with the clique ordering: if X; first appears in
C; and X, first appears in C;, for i < 7, then X; must precede X, in the ordering. We now
construct a Bayesian network using the procedure Build-Minimal-I-Map of algorithm 3.2 applied
to the resulting node ordering X,..., X, and to Z(H).

Let G be the resulting network. We first show that, when X; is added to the graph, then X;'s
parents are precisely U; = Nbyx. N {X1,...,X;_1}, where Nby, is the set of neighbors of X;
in H. In other words, we want to show that X; is independent of {X,..., X; 1} — U; given
U;. Let Cy be the first clique in the clique ordering to which X; belongs. Then U; C C4.
Let C; be the parent of C. in the rooted clique tree. According to our selected ordering, all of
the variables in C; are ordered before any variable in Cj. — C. Thus, S C {X;,..., X;_1}.
Moreover, from our choice of ordering, none of {X;,...,X; 1} — U, are in any descendants
of Cy, in the clique tree. Thus, they are all in W (; ). From theorem 4.12, it follows that S
separates X; from all of {X;,...,X; 1} — Uy, and hence that X; is independent of all of
{X1,..., Xi—1}— U, given U,. It follows that G and H have the same set of edges. Moreover,
we note that all of U; are in C}, and hence are connected in G. Therefore, G is moralized. As
‘H is the moralized undirected graph of G, the result now follows from proposition 4.9. =

For example, the graph G, of figure 4.13b, and its moralized network M} encode precisely the
same independencies. By contrast, as we discussed, there exists no Bayesian network that
encodes precisely the independencies in the nonchordal network H; of figure 4.13a.

Thus, we have shown that chordal graphs are precisely the intersection between Markov
networks and Bayesian networks, in that the independencies in a graph can be represented
exactly in both types of models if and only if the graph is chordal.

Partially Directed Models

So far, we have presented two distinct types of graphical models, based on directed and undi-
rected graphs. We can unify both representations by allowing models that incorporate both
directed and undirected dependencies. We begin by describing the notion of conditional ran-
dom field, a Markov network with a directed dependency on some subset of variables. We then
present a generalization of this framework to the class of chain graphs, an entire network in
which undirected components depend on each other in a directed fashion.

Conditional Random Fields

So far, we have described the Markov network representation as encoding a joint distribution
over X. The same undirected graph representation and parameterization can also be used to
encode a conditional distribution P(Y | X)), where Y is a set of target wariables and X is
a (disjoint) set of observed variables. We will also see a directed analogue of this concept in
section 5.6, In the case of Markov networks, this representation is generally called a conditional
random field (CRF).
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Figure 4.14 Different linear-chain graphical models: (a) a linear-chain-structured conditional random
field, where the feature variables are denoted using grayed-out ovals; (b) a partially directed variant; (c) a
fully directed, non-equivalent model. The X;'s are assumed to be always observed when the network is
used, and hence they are shown as darker gray.

CRF Representation and Semantics

More formally, a CRF is an undirected graph whose nodes correspond to ¥ U X At a high level,
this graph is parameterized in the same way as an ordinary Markov network, as a set of factors
d1(D1),...,0m (D). (As before, these factors can also be encoded more compactly as a
log-linear model; for uniformity of presentation, we view the log-linear model as encoding a set
of factors.) However, rather than encoding the distribution P(Y", X), we view it as representing
the conditional distribution P(Y | X). To have the network structure and parameterization
correspond naturally to a conditional distribution, we want to avoid representing a probabilistic
model over X . We therefore disallow potentials that involve only variables in X.

A conditional random field is an undirected graph H whose nodes correspond to X U'Y; the
network is annotated with a set of factors ¢1(D1),. .., 0m(Dyy,) such that each D; € X. The
network encodes a conditional distribution as follows:

PY|X) = ﬁﬁ(Y,X)
P(Y,X) = []¢:i(Ds) @11
=1
Z(X) = Y P(Y,X).
Y

Two variables in H are connected by an (undirected) edge whenever they appear together in the
scope of some factor. =

The only difference between equation (4.11) and the standard Markov network definition in
definition 4.4 is the different normalization used in the partition function Z(X). The definition
of a CRF induces a different value for the partition function for every assignment = to X. This
difference is denoted graphically by having the feature variables grayed out.

Consider a CRF over Y = {Y1,..., Y} and X = {Xy,..., X}, with an edge Y;—Y;,
i=1,....,k—1)and an edge Y;—X; (i = 1,...,k), as shown in figure 4.14a. The distribution
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represented hy this netwaork has the form:
1

PY|X) = Z(X)P(Y,X)
k—1 k
PY,X) = []oiYin)[[o(vi X
i=1 1=1
Z(xX) = Y P(Y,X). g
Y

Note that, unlike the definition of a conditional iyesian network, the structure of a CRF may
still contain edges between variables in X, whichase when two such variables appear together
in a factor that also contains a target variable. Hower, these edges do not encode the structure
of any distribution over X, since the network explitly does not encode any such distribution.

The fact that we avoid encoding the distribuion over the variables in X is one of the
main strengths of the CRF representation. Thiflexibility allows us to incorporate into
the model a rich set of observed variables wise dependencies may be quite complex
or even poorly understood. It also allows uto include continuous variables whose
distribution may not have a simple parametic form, This flexibility allows us to use
domain knowledge in order to define a rich « of features characterizing our domain,
without worrying about modeling their joini distribution. For example, returning to
the vision MRFs of box 4.B, rather than definiga joint distribution over pixel values and
their region assignment, we can define a condimal distribution over segment assignments
given the pixel values. The use of a conditional diribution here allows us to avoid making a
parametric assumption over the (continuous) pirlvalues. Even more important, we can use
image-processing routines to define rich features, sich as the presence or direction of an image
gradient at a pixel. Such features can be highly inmative in determining the region assignment
of a pixel. However, the definition of such featuresusually relies on multiple pixels, and defining
a correct joint distribution or a set of independen¢assumptions over these features is far from
trivial. The fact that we can condition on these ftures and avoid this whole issue allows us
the flexibility to include them in the model. See i 4.E for another example.

Directed and Undirecied Dependencies

A CRF defines a conditional distribution of ¥ u X; thus, it can be viewed as a partially
directed graph, where we have an undirected compnent over Y, which has the variables in X
as parents.

Consider a CRF over the binary-valued wriables = {Xy,..., Xy} and Y = {Y'}, and a
pairwise potential between Y and each X;; this mdel is sometimes known as a naive Markov
model, due to its similarity to the naive Bayes modl Assume that the pairwise potentials defined
via the following log-linear model

(X, Y) = exp{w; {X; =1,Y =1}}.

We also introduce a single-node potential ¢o(Y') =up {wol{Y = 1}}. Following equation (4.11),
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we now have:

k
P(Y: 1| 21,...,2%) = exp{wo+z-w?—,3:,:}

i=1

P(Y =0|z1,...,zx) = exp{0}=1L1.

In this case, we can show (exercise 5.16) that

k
P(Y =1]x,...,z;) = sigmoid (wa —|—Zwix1—) ,

i=1

where

2

o e
sigmoid(z) = 3o
is the sigmoid function. This conditional distribution P(Y | X) is of great practical interest: It
defines a CPD that is not structured as a table, but that is induced by a small set of parameters
wy, ..., wx — parameters whose number is linear, rather than exponential, in the number of
parents. This type of CPD, often called a logistic CPD, is a natural model for many real-world
applications, inasmuch as it naturally aggregates the influence of different parents. We discuss this
CPD in greater detail in section 5.4.2 as part of our general presentation of structured CPDs. @

The partially directed model for the CRF of example 4.19 is shown in figure 414b. We may be
tempted to believe that we can construct an equivalent model that is fully directed, such as the
one in figure 4.14c. In particular, conditioned on any assignment x, the posterior distributions
over Y in the two models satisfy the same independence assignments (the ones defined by
the chain structure). However, the two models are not equivalent: In the Bayesian network, we
have that Y; is independent of X, if we are not given Y. By contrast, in the original CRF, the
unnormalized marginal measure of ¥ depends on the entire parameterization of the chain, and
specifically the values of all of the variables in X. A sound conditional Bayesian network for
this distribution would require edges from all of the variables in X to each of the variables V7,
thereby losing much of the structure in the distribution. See also box 20.A for further discussion.

Box 4.E — Case Study: CRFs for Text Analysis. One important use for the CRF framework is
in the domain of text analysis. Various models have been proposed for different tasks, including
part-of-speech labeling, identifying named entities (people, places, organizations, and so forth), and
extracting structured information from the text (for example, extracting from a reference list the
publication titles, authors, journals, years, and the like). Most of these models share a similar
structure: We have a target variable for each word (or perhaps short phrase) in the document,
which encodes the possible labels for that word. Each target variable is connected to a set of feature
wariables that capture properties relevant to the target distinction. These methods are very popular
in text analysis, both because the structure of the networks is a good fit for this domain, and because
they produce state-of-the-art results for a broad range of natural-language processing problems.

As a concrete example, consider the named entity recognition task, as described by Sutton and
McCallum (2004, 2007). Entities often span multiple words, and the type of an entity may not be
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apparent from individual words; for example, “New York” is a location, but “New York Times” is
an organization. The problem of extracting entities from a word sequence of length T' can be cast
as a graphical model by introducing for each word, X;,1 < t < T, a target variable, Y3, which
indicates the entity type of the word. The outcomes of Y; include B-Person, I-Person, B-Locarion,
[-Location, B-Oreanization, I-Orcanization, and Otuer. In this so-called “BIO notation,” OTHER
indicates that the word is not part of an entity, the B- outcomes indicate the beginning of a named
entity phrase, and the 1- outcomes indicate the inside or end of the named entity phrase. Having a
distinguishing label for the beginning versus inside of an entity phrase allows the model to segment
adjacent entities of the same type.

A common structure for this problem is a linear-chain CRF often having two factors for each
word: one factor ¢}(Yy, Yii1) to represent the dependency between neighboring target variables,
and another factor $?(Y;, X1, ..., Xr) that represents the dependency between a target and its
context in the word sequence. Note that the second factor can depend on arbitrary features of
the entire input word sequence. We generally do not encode this model using table factors, but
using a log-linear model. Thus, the factors are derived from a number of feature functions, such
as f(Y:, X¢) = I{Y; = B-Orcanization, X; = “Times”}. We note that, just as logistic CPDs are
the conditional analog of the naive Bayes classifier (example 4.20), the linear-chain CRF is the
conditional analog of the hidden Markov model (HMM) that we present in section 6.2.3.1

A large number of features of the word X, and neighboring words are relevant to the named
entity decision. These include features of the word itself: is it capitalized; does it appear in a list of
common person names; does it appear in an atlas of location names; does it end with the character
string “ton’; is it exactly the string “York”: is the following word “Times.” Also relevant are aggregate
features of the entire word sequence, such as whether it contains more than two sports-related
words, which might be an indicator that “New York” is an organization (sports team) rather than
a location. In addition, including features that are conjunctions of all these features often increases
accuracy. The total number of features can be quite large, often in the hundreds of thousands o
more if conjunctions of word pairs are used as features. However, the features are sparse, meaning
that most features are zero for most words.

Note that the same feature variable can be connected to multiple target variables, so that Yy
would typically be dependent on the identity of several words in a window around position t. These
contextual features are often highly indicative: for example, “Mrs.” before a word and “spoke” after
a word are both strong indicators that the word is a person. These context words would generally
be used as a feature for multiple target variables. Thus, if we were using a simple naive-Bayes-style
generative model, where each target variable is a parent of its associated feature, we either woula
have to deal with the fact that a context word has multiple parents or we would have to duplicate
its occurrences (with one copy for each target variable for which it is in the context), and thereb)
overcount its contribution.

Linear-chain CRFs frequently provide per-token accuracies in the high 90 percent range on man)
natural data sets. Per-field precision and recall (where the entire phrase category and boundarie:
must be correct) are more often around 80-95 percent, depending on the data set.

Although the linear-chain model is often effective, additional information can be incorporatec
into the model by augmenting the graphical structure. For example, often when a word occur:
multiple times in the same document, it often has the same label. This knowledge can be incor
porated by including factors that connect identical words, resulting in a skip-chain CRF, as showr
in figure 4.Ela. The first occurrence of the word “Green” has neighboring words that provide strong
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Mrs. Green spoke today in New York Green  chairs the finance committee
KEY
B-PER Begin person name I-LOC Within location name

I-PER  Within person name OTH  Not an entitiy
B-LOC Begin location name

&
@
&
o
&

British Airways  rose after announcing its  withdrawal from the UAL deal
KEY
B Begin noun phrase Vo Verb
I Within noun phrase IN  Preposition
o Not a noun phrase PRP Possesive pronoun
N Noun DT Determiner (e.g., a, an, the)

ADJ  Adjective
(b)

Figure 4,E.1 — Two models for text analysis based on a linear chain CRF Gray nodes indicate X
and clear nodes Y. The annotations inside the ¥ are the true labels. (a) A skip chain CRF for named
entity recognition, with connections between adjacent words and long-range connections between multiple
occurrences of the same word. (b) A pair of coupled linear-chain CRFs that performs joint part-of-speech
labeling and noun-phrase segmentation. Here, B indicates the beginning of a noun phrase, I other words in
the noun phrase, and O words not in a noun phrase. The labels for the second chain are parts of speech.
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evidence that it is a Persoxs name; however, the second occurrence is much more ambiguous.
By augmenting the originallinear-chain CRF with an additional long-range factor that prefers its
connected target variables tohave the same value, the model is more likely to predict correctly that
the second occurrence is alson PersoN. This example demonstrates another flexibility of conditional
models, which is that the guphical structure over Y can easily depend on the value of the X's.

CRFs having a wide varidy of model structures have been successfully applied to many differ-
ent tasks. Joint inference of both part-of-speech labels and noun-phrase segmentation has been
performed with two conneded linear chains (somewhat analogous to a coupled hidden Markov
mode, shown in figure 6.3). This structure is illustrated in figure 4.E.1b.

Chain Graph Models %

We now present a more general framework that builds on the CRF representation and can be
used to provide a general trastment of the independence assumptions made in these partially
directed models. Recall fiom definition 2.21 that, in a partially directed acyclic graph (PDAG),
the nodes can be disjointly partitioned into several chain components. An edge between two
nodes in the same chain component must be undirected, while an edge between two nodes in
different chain componentsmust be directed. Thus, PDAGs are also called chain graphs.

Factorization

As in our other graphical rpresentations, the structure of a PDAG KC can be used to define
a factorization for a probaity distribution over K. Intuitively, the factorization for PDAGs
represents the distribution s a product of each of the chain components given its parents.
Thus, we call such a representation a chain graph model.

Intuitively, each chain component K; in the chain graph model is associated with a CRF that
defines P(K; | Pag,) — the conditional distribution of K; given its parents in the graph.
More precisely, each is defied via a set of factors that involve the variables in K; and their
parents; the distribution PK; | Pag,) is defined by using the factors associated with K; to
define a CRF whose target wriables are K; and whose observable variables are Pag,.

To provide a formal defuiion, it helps to introduce the concept of a moralized PDAG.

Let KC be a PDAG and K 1,..., K be its chain components. We define Pay, to be the parents of
nodes in K ;. The moralizedgaph of K is an undirected graph M|K) produced by first connecting,
using undirected edges, anypir of nodes X,Y € Pag. foralli=1,...,¢, and then converting
all directed edges into undirtted edges. m

This definition generalizes our earlier notion of a moralized directed graph. In the case of
directed graphs, each nodeis its own chain component, and hence we are simply adding
undirected edges between the parents of each node.

Figure 4.15 shows a chain gmph and its moral graph. We have added the edge between A and B,
since they are both parentsfthe chain component {C, D, E}, and edges between C, E, and H,
because they are parents of the chain component {I}. Note that we did not add an edge between




Dehinition 4.20

chain graph
distribution

Example 4.22

4.6.2.2

boundary

4.6. Partially Directed Models 149

Figure 415 A chain graph C and its moralized version

D and H (even though D and C, E are in the same chain component), since D is not a parent of
74 @

We can now define the factorization of a chain graph:

Let KC be a PDAG, and K,...,K; be its chain components. A chain graph distribution is
defined via a set of factors ¢;(D;) G = 1,...,m), such that each D; is a complete subgraph in
the moralized graph M|K]. We associate each factor ¢;(D;) with a single chain component K j,
such that D; C K; U Pag, and define P(K; | Pag.) as a CRF with these factors, and with
Y; =K, and X, = Pag,. We now define

£
P(x) = [[ P(K: | Pak,).

t=1 ]

We say that a distribution P factorizes over K if it can be represented as a chain graph
distribution over K.

In the chain graph model defined by the graph of figure 4.15, we require that the conditional
distribution P(C, D, E | A, B) factorize according to the graph of figure 4.16a. Specifically, we
would have to define the conditional probability as a normalized product of factors:

1
E_(TB)% (A, C)¢2(B, E)¢3(C, D)¢s(D, E).
A similar factorization applies to P(F,G | C, D). =

Independencies in Chain Graphs

As for undirected graphs, there are three distinct interpretations for the independence properties
induced by a PDAG. Recall that in a PDAG, we have both the notion of parents of X (variables
Y such that ¥ — X is in the graph) and neighbors of X (variables Y such that Y —X is
in the graph). The union of these two sets is the boundary of X, denoted Boundary 5. Also
recall, from definition 2.15, that the descendants of X are those nodes Y that can be reached
using any directed path, where a directed path can involve both directed and undirected edges
but must contain at least one edge directed from X to Y, and no edges directed from Y to
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(a) (b)
Figure 4.16 Example for definition of c-separation in a chain graph. (a) The Markov network

MIGT[C, D, E)]. (b) The Markov network M[GT[C, D, E, I]].

X . Thus, in the case of PDAGs, it follows that if Y is a descendant of X, then Y must be in a
“lower” chain component.

For a PDAG K, we define the pairwise independencies associated with K to be:

Z,(K) = {(X LY | (NonDescendantsx — {X,Y})) :
X.,Y non-adjacent,Y € NonDescendantsx }. =
This definition generalizes the pairwise independencies for undirected graphs: in an undirected

graph, nodes have no descendants, so NonDescendantsx = X. Similarly, it is not too hard to
show that these independencies also hold in a directed graph.

For a PDAG K, we define the local independencies associated with K to be:
T,(K) = {(X L NonDescendantsx — Boundaryy | Boundaryx) : X € X} 0

This definition generalizes the definition of local independencies for both directed and undi-
rected graphs. For directed graphs, NonDescendantsx is precisely the set of nondescendants,
whereas Boundary y is the set of parents. For undirected graphs, NonDescendantsx is X,
whereas Boundary y = Nbx.

We define the global independencies in a PDAG using the definition of moral graph. Our
definition follows the lines of proposition 4.10.

Let X,Y,Z C X be three disjoint sets, and let U = X UY U Z. We say that X is c-separated
fromY given Z if X is separated from Y given Z in the undirected graph MKt X UY U Z||»

Consider again the PDAG of figure 4.15. Then C' is c-separated from E given D, A, because C and E
are separated given D, A in the undirected graph M[K*[{C, D, E'}}], shown in figure 4.16a. How-
ever, C is not c-separated from E given only D, since there is a path between C and E via A B.
On the other hand, C is not separated from E given D, A, I. The graph M[K*[{C, D, E, IY]] is
shown in figure 4.16b. As we can see, the introduction of I into the set U causes us to introduce
a direct edge between C and E in order to moralize the graph. Thus, we cannot black the path
between A and E using D, A, 1. a
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This notion of c-separation clearly generalizes the notion of separation in undirected graphs,
since the ancestors of a set U in an undirected graph are simply the entire set of nodes X. It
also generalizes the notion of d-separation in directed graphs, using the equivalent definition
provided in proposition 4.10. Using the definition of c-separation, we can finally define the
notion of global Markov independencies:

Let IC be a PDAG. We define the local independencies associated with K to be:
IK)={(X LY |2Z): X, Y, ZCX X is cseparated from Y given Z}. =

As in the case of undirected models, these three criteria for independence are not equivalent
for nonpositive distributions. The inclusions are the same: the global independencies imply
the local independencies, which in turn imply the pairwise independencies. Because undirected
models are a subclass of PDAGs, the same counterexamples used in section 4.3.3 show that the
inclusions are strict for nonpositive distributions. For positive distributions, we again have that
the three definitions are equivalent.

We note that, as in the case of Bayesian networks, the parents of a chain component are
always fully connected in M[IC[K; U Pag.|]. Thus, while the structure over the parents helps
factorize the distribution over the chain components containing the parents, it does not give
rise to independence assertions in the conditional distribution over the child chain component.
Importantly, however, it does give rise to structure in the form of the parameterization of
P(K,; | Pak,), as we saw in example 4.20.

As in the case of directed and undirected models, we have an equivalence between the
requirement of factorization of a distribution and the requirement that it satisfy the indepen-
dencies associated with the graph. Not surprisingly, since PDAGs generalize undirected graphs,
this equivalence only holds for positive distributions:

A positive distribution P factorizes over a PDAG IC if and only if P = T(K).
We omit the proof.

Summary and Discussion

In this chapter, we introduced Markov networks, an alternative graphical modeling language for
probability distributions, based on undirected graphs.

We showed that Markov networks, like Bayesian networks, can be viewed as defining a set
of independence assumptions determined by the graph structure. In the case of undirected
models, there are several possible definitions for the independence assumptions induced by
the graph, which are equivalent for positive distributions. As in the case of Bayesian network,
we also showed that the graph can be viewed as a data structure for specifying a probability
distribution in a factored form. The factorization is defined as a product of factors (general
nonnegative functions) over cliques in the graph. We showed that, for positive distributions, the
two characterizations of undirected graphs — as specifying a set of independence assumptions
and as defining a factorization — are equivalent.

Markov networks also provide useful insight on Bayesian networks. In particular, we showed
how a Bayesian network can be viewed as a Gibbs distribution. More importantly, the unnor-
malized measure we obtain by introducing evidence into a Bayesian network is also a Gibbs
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distribution, whose partition function is the probability of the evidence. This observation will
play a critical role in providing a unified view of inference in graphical models.

We investigated the relationship between Bayesian networks and Markov networks and showed
that the two represent different families of independence assumptions. The difference in these
independence assumptions is a key factor in deciding which of the two representations to
use in encoding a particular domain. There are domains where interactions have a natural
directionality, often derived from causal intuitions. In this case, the independencies derived
from the network structure directly reflect patterns such as intercausal reasoning. Markov
networks represent only monotonic independence patterns: observing a variable can only
serve to remove dependencies, not to activate them. Of course, we can encode a distribution
with “causal” connections as a Gibbs distribution, and it will exhibit the same nonmonotonic
independencies. However, these independencies will not be manifest in the network structure.

In other domains, the interactions are more symmetrical, and attempts to force a
directionality give rise to models that are unintuitive and that often are incapable of cap-
turing the independencies in the domain (see, for example, section 6.6). As a consequence,
the use of undirected models has increased steadily, most notably in fields such as computer
vision and natural language processing, where the acyclicity requirements of directed graphical
models are often at odds with the nature of the model. The flexibility of the undirected model
also allows the distribution to be decomposed into factors over multiple overlapping “features”
without having to worry about defining a single normalized generating distribution for each
variable. Conversely, this very flexibility and the associated lack of clear semantics for the
model parameters often make it difficult to elicit models from experts. Therefore, many
recent applications use learning techniques to estimate parameters from data, avoiding
the need to provide a precise semantic meaning for each of them.

Finally, the question of which class of models better encodes the properties of the distribution
is only one factor in the selection of a representation. There are other important distinctions
between these two classes of models, especially when it comes to learning from data. We return
to these topics later in the book (see, for example, box 20.A).

Relevant Literature

The representation of a probability distribution as an undirected graph has its roots in the
contingency table representation that is a staple in statistical modeling. The idea of representing
probabilistic interactions in this representation dates back at least as early as the work of Bartlett
(1935). This line of work is reviewed in detail by Whittaker (1990) and Lauritzen (1996), and we
refer the reader to those sources and the references therein.

A parallel line of work involved the development of the Markov network (or Markov random
field) representation. Here, the starting point was a graph object rather than a distribution object
(such as a contingency table). Isham (1981) surveys some of the early work along these lines.

The connection between the undirected graph representation and the Gibbs factorization of
the distribution was first made in the unpublished work of Hammersley and Clifford (1971). As
a consequence, they also showed the equivalence of the different types of (local, pairwise, and
global) independence properties for undirected graphs in the case of positive distributions.

Lauritzen (1982) made the connection between MRFs and contingency tables, and proved
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some of the key results regarding the independence properties arising form the undirected
representation. The line of work analyzing independence properties was then significantly
extended by Pearl and Paz (1987). The history of these developments and other key references
are presented by Pearl (1988) and Lauritzen (1996). The independence properties of chain graphs
were studied in detail by Frydenberg (1990); see also Lauritzen (1996). Studeny and Bouckaert
(1998) also provide an alternative definition of the independence properties in chain graphs, one
that is equivalent to c-separation but more directly analogous to the definition of d-separation
in directed graphs.

Factor graphs were presented by Kschischang et al. (2001a) and extended by Frey (2003) to en-
compass both Bayesian networks and Markov networks. The framework of conditional random
fields (CRFs) was first proposed by Lafferty, McCallum, and Pereira (2001). They have subse-
quently been used in a broad range of applications in natural language processing, computer
vision, and many more. Skip-chain CRFs were introduced by Sutton and McCallum (2004}, and
factorial CRFs by Sutton et al. (2007). Sutton and McCallum (2007) also provide an overview of
this framework and some of its applications.

Ising models were first proposed by Ising (1925). The literature on this topic is too vast to
mention; we refer the reader to any textbook in the area of statistical physics. The connection
between Markov networks and these models in statistical physics is the origin of some of the
terminology associated with these models, such as partition function or energy. In fact, many
of the recent developments in inference for these models arise from approximations that were
first proposed in the statistical physics community. Boltzmann machines were first proposed by
Hinton and Sejnowski (1983).

Computer vision is another application domain that has motivated much of the work in
undirected graphical models. The applications of MRFs to computer vision are too numerous to
list; they span problems in low-level vision (such as image denoising, stereo reconstruction, or
image segmentation) and in high-level vision (such as object recognition). Li (2001) provides a
detailed description of some early applications; Szeliski et al. (2008) describe some applications
that are viewed as standard benchmark problems for MRFs in the computer vision field.

Exercises

Exercise 4.1

Complete the analysis of example 4.4, showing that the distribution P defined in the example does not
factorize over H. (Hint: Use a proof by contradiction.)

Exercise 4.2

In this exercise, you will prove that the modified energy functions €} (A, B) and e5(B, C) of figure 4.10
result in precisely the same distribution as our original energy functions. More generally, for any constants
A and \°, we can redefine

¢ (a,b') er(a,b') + X'
(b c) = e(b',e)— N

Il

Show that the resulting energy function is equivalent.

Exercise 4.3

Provide an example a class of Markov networks H.,. over n such that the size of the largest clique in H.,
is constant, yet any Bayesian network I-map for H,, is exponentially large in n.
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Exercise 4.4%*
Prove theorem 4.7 for the case where H consists of a single clique.

Exercise 4.5

Complete the proof of theorem 4.3, by showing that Uy and Uy, are dependent given Z in the distribution
P defined by the product of potentials described in the proof.

Exercise 4.6«

Consider a factor graph F, as in definition 4.13. Define the minimal Markov network 7 that is guaranteed
to be an I-map for any distribution defined over F. Prove that H is a sound and complete representation
of the independencies in F:

a. If sepy (X;Y | Z) holds, then (X LY | Z) holds for all distributions over F.
b. If sep;,(X;Y | Z) does not hold, then there is some distribution P that factorizes over F such thai

(X LY | Z) does not hold in P.
Exercise 4.7%
The canonical parameterization in the Hammersley-Clifford theorem is stated in terms of the maxima
cliques in a Markov network. In this exercise, you will show that it also captures the finer-grainec
representation of factor graphs. Specifically, let P be a distribution that factorizes over a factor graph F
as in definition 4.13. Show that the canonical parameterization of P also factorizes over F.
Exercise 4.8
Prove proposition 4.3. More precisely, let P satisfy Z;(*), and assume that X and Y are two nodes in h
that are not connected directly by an edge. Prove that P satisfies (X LY | X — {X,Y}).
Exercise 4.9%

Complete the proof of theorem 4.4, Assume that equation (4.1) holds for all disjoint sets X, Y, Z, with
|Z| > k. Prove that equation (4.1) also holds for any disjoint X, Y, Z such that X UY U Z # X anc
|Z|=k—1.

Exercise 4.10
We define the following properties for a set of independencies:
¢ Strong Union:
(X LY | 2)= (X 1Y |Z W) (412

In other words, additional evidence W cannot induce dependence.
s Transitivity: For all disjoint sets X,Y", Z and all variables A:

(X LA|Z)&~(ALY |Z)=~(X LY |2). @1

Intuitively, this statement asserts that if X and Y are both correlated with some A (given Z), then the
are also correlated with each other (given Z). We can also write the contrapositive of this statemen
which is less obvious but easier to read. For all X, Y, Z, A:

(X1Y|2Z)—(XLA|Z)V(ALY |2Z).
Prove that if T = Z(H) for some Markov network H, then Z satisfies strong union and transitivity.

Exercise 4.11x

In this exercise you will prove theorem 4.6. Consider some specific node X, and let U/ be the set of a
subsets U satisfying definition 4.12. Define U™ to be the intersection of all U € U.

a. Prove that U* € U. Conclude that MBp(X) = U™




Definition 4.25

Markov network
decomposition

Definition 4.26

4.9. Exercises 155

b. Prove thatif PE= (X LY | X —{X,Y}), then Y & MBp(X).

c. Prove thatif Y € MBp(X), then P (X LY | X — {X,Y}).

d. Conclude that MBp(X) is precisely the set of neighbors of X in the graph defined in theorem 4.5,
showing that the construction of theorem 4.6 also produces a minimal I-map.

Exercise 4.12

Show that a Boltzmann machine distribution (with variables taking values in {0, 1}) can be rewritten as

an Ising model, where we use the value space {—1, +1} (mapping 0 to —1).

Exercise 4.13

Show that we can represent any Gibbs distribution as a log-linear model, as defined in definition 4.15.

Exercise 4.14

Complete the proof of propoesition 4.8. In particular, show the following;

a. For any variable X, let W = &' — {X} — MBg(X). Then d-sep; (X; W | MBg(X)).
b. The set MBg(X) is the minimal set for which this property holds.

Exercise 4.15

Prove proposition 4.10.

Exercise 4.16

Provide an example of a class of Markov networks M, over n nodes for arbitrarily large n (not necessarily
for every n), where the size of the largest clique is a constant independent of n, yet the size of the largest
clique in any chordal graph HS that contains M, is exponential in n. Explain why the size of the largest
clique is necessarily exponential in n for all HS,

Exercise 4.17x

In this exercise, you will prove that the chordality requirement for graphs is equivalent to two other
conditions of independent interest.

Let XY, Z be disjoint sets such that X = X UY UZ and XY # (. We say that (X, Z,Y) isa
decomposition of a Markov network H if Z separates X fromY and Z is a complete subgraph in H. m

We say that a graph H is decomposable if there is a decomposition (X, Z,Y ) of H, such that the graphs
induced by X U Z and Y U Z are also decomposable. =

Show that, for any undirected graph H, the following conditions are equivalent:

a. H is decomposable;
b. H is chordal;
c. for every X, Y, every minimal set Z that separates X and Y is complete.

The proof of equivalence proceeds by induction on the number of vertices in X. Assume that the three
conditions are equivalent for all graphs with |X'| < n, and consider a graph H with |X| =n + 1.

a. Prove that if H is decomposable, it is chordal.

b. Prove that if H is chordal, then for any X, ¥, and any minimal set Z that separates X and Y, Z is
complete.

c. Prove that for any X, Y, any minimal set Z that separates X and Y is complete, then H is decom-
posable.
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Exercise 4.18

Let G be a Bayesian network structure and H a Markov network structure over X' such that the skeleton
of G is precisely H. Prove that if G has no immoralities, then Z(G) = Z(H).

Exercise 4.19

Consider the PDAG of figure 4.15. Write down all c-separation statements that are valid given {G}; write
down all valid statements given {G, D}; write down all statements that are valid given {C', D, E'}.




