
10-708: Probabilistic Graphical Models 10-708, Spring 2018

10 : HMM and CRF

Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman

1 Case Study: Supervised Part-of-Speech Tagging

We will examine the applications of Hidden Markov Model, Conditional Random Field, and Maximum
Entropy Markov Model in the context of a supervised part-of-speech tagging. In this NLP task, we are given
data of the form D = {x(n), y(n)}Nn=1 where x(n) is a sequence of words and y(n) is a sequence of tags that
correspond to parts of speech of the same length as x(n). Each sentence begins with the start token y0. Our
goal is to train a system which will automatically tag the parts of speech in new sentences.

Figure 1: Factors for part-of-speech tagging.

As shown in Figure 1, we can construct a graph with two sets of factors: those between tags and words, and
those between tags. To reduce the number of parameters, all members of the same set will reuse the same
parameters. From these local opinions, the global probability can be calculated as the normalized product
of local opinions:

p(n, v, p, d, n, time, flies, like, an, arrow) =
1

Z
(4 ∗ 8 ∗ 5 ∗ 3 . . .)

where Z is a normalization constant. Similarly, the probability of a sentence can be calculated by summing
over all possible tag sequences. If this model is a Markov Random Field (MRF), the individual factors aren’t
necessarily probabilities and we must calculate the normalization constant Z separately, which would equal
the sum of tag products of all possible permutations of tags for a sentence . If instead the model is a Bayesian
Network (BN), then the factors represent conditional probabilities and each row in the factor table already
sums to one. To look up a conditional probability in a factor table of a discrete case: P (y2|y1), would equal
the value in the column corresponding to y2 and the row corresponding to y1. In this case, Z = 1 and the

1

2 10 : HMM and CRF

joint probability is simply:

p(n, v, p, d, n, time, flies, like, an, arrow) = (0.3 ∗ 0.8 ∗ 0.2 ∗ 0.5 ∗ . . .)

1.1 Hidden Markov Model

A Hidden Markov Model (HMM) makes the Markov assumption that the probability of the current is only
dependent on the state before it:

P (x1:n, y1:n) =

n∏
i=1

P (xi|yi)P (yi|yi−1)

However, HMM models capture dependencies between each state and only its corresponding observation.
This misses many valuables dependencies; for example, in a sentence segmentation task, each segmental
state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local)
features of the whole line.

Figure 2: The structure of an HMM.

Furthermore, there is a mismatch between the learning objective function and predictive objective function.
The HMM learns a joint distribution of states and observations P (Y,X) but in a prediction task, we are
only interested in the conditional probability P (Y |X) which is more computationally tractable to estimate.

1.2 Forward-Backward and Vertbi Algorithm

For details of the Forward-Backward Algorithm and Viterbi, see Notes from Feb 1. The Forward-Backward
Algorithm is also known as the sum product algorithm for HMMs and computes marginals of cliques of
variables. The Viterbi algorithm is also known as the max product algorithm for HMMs and computes that
maximum assignment probability.

Aside: The message passing algorithm is a generalization of the forward backward algorithm and Vertbi, but
we refer to the Forward-Backward Algorithm specifically for HMM, because it was published first

1.3 Conditional Random Field

What if our goal is simply to label a test sentence with parts-of-speech tags, rather than generating new
sentences, why do we need to model the joint probability? This seems like wasted effort and leads us to
consider conditional random fields. Unlike the HMM in a conditional random field formulation, we are
concerned with simply modeling the conditional distribution over tags Yi given words xi, a task which
computationally more tractable. The factors and Z are now specific to the sentence, and variables are
“clamped” to their value in that particular sentence (Figure 3). This is equivalent to multiplying in an

10 : HMM and CRF 3

“evidence potential” which is a point mass with all its weight on Xi = xi. This is similar to the familiar
concept in linear regression in which we assume Y = Xβ + ε and seek only to estimate pθ(Y |X) rather than
pθ(Y,X).

Figure 3: A CRF for part-of-speech tagging.

To identify parts-of-speech tags, our model must examine the context of each word (each word alone may
have multiple applicable part-of-speech tags) using the forward-backward algorithm.

1.4 Maximum Entropy Markov Model

We can also overcome the problems seen in an HMM model by the Maximum Entropy Markov Model
(MEMM), shown in Figure 4.

Figure 4: The structure of a MEMM.

In a MEMM,, and the entire word sequence is has an arrow to each node, rather than a single word as in the
HMM. Because the directionality is reversed, the arrows no longer imply causality. Like the CRF introduced
previously the variables are “clamped” to their value in that particular sentence. This part of the model can
be viewed as regression from the sentence to the tags. Like an HMM however, there are still arrows between
each of the tag variables. Finally, the overall normalizer is replaced by normalizing each factor:

P (y1:n|x1:n) =

n∏
i=1

P (yi|yi−1, x1:n) =

n∏
I=1

exp(wT f(yi, yi−1, x1:n)

Z(yi−1, x1:n)

This is a discriminative model which saves modeling effort by completely ignoring P (X).

4 10 : HMM and CRF

1.5 Label Bias Problem

Unfortunately, both HMM and MEMM share a common problem: label bias. As an example, consider
the transition probabilities depicted in Figure 5. Based on these transition probabilities, state 1 almost
always prefers to go to state 2 and state 2 almost always prefers to stay in state 2. Thus, message passing
algorithms select a path 1→ 2→ 2→ 2, but the most likely path is actually 1→ 1→ 1→ 1. This happens
because state 1 has fewer transitions than state 2, and thus the average transition probability from state 2
is lower, resulting in the label bias problem: a preference for states with a lower number of transitions.
This problem can be solved by replacing the transition probabilities with transition potentials, and leaving
normalization the end.

Figure 5: A state transition configuration which results in label bias.

1.6 Linear-chain CRF

A linear-chain CRF is created from a MEMM by removing directionality from connections in Y variables,
and moving normalization outside the factors:

P (y1:n|x1:n) =
1

Z(x1:n)

n∏
i=1

φ(yi, yi−1, x1:n) =
1

Z(x1:n)

n∏
i=1

exp(wT f(yi, yi−1, x1:n))

An example of a CRF is shown in Figure 6. This is a partially directed model, and unlike MEMM, each
factor is not normalized locally.

The differences between the three models we have discussed in the discrete case can be seen in Figure 7. As
shown for all three models Marginal Inference and Map Inference just uses the message passing algorithm,

10 : HMM and CRF 5

Figure 6: A CRF example.

while the learning algorithm differs depneding on the model

Figure 7: Table comparing HMM,MEMM, and Chain CRF

1.7 When to choose CRF vs HMM?

Liang and Jordan (ICML 2008) compared HMM and CRF models with identical features. In a real dataset,
the CRF outperforms the HMM, but in a simulated dataset, the HMM outperforms. This illustrates a key
point: if the model is mis-specified, the discriminative model is better. If the model is close to the truth,
the generative model does better. Since most data is generated by a complex process that is not captured
according to simple Markov assumptions, a CRF typically outperforms HMM on real data.

1.8 Features that can be used in an MEMM or CRF

Because an MEMM and Linear Chain CRF have arrows from all of X to each tag variable, we can add some
more complex features to X to add more information to our learning problem. Features that have been used
in the past for speach tagging include:

6 10 : HMM and CRF

• Count of tag P as the tag for a specific word, weight of this feature is like the log of an emission
probability

• Count of tag P, prior probability

• Count of tag P in the middle of the third sentence

• Count of tag bigram of Verb adjective

• Last 2 chars of word i (will be ed for most past-tense verbs)

• Whether word i appears in thesaurus entry e (one attribute per e)

• Shape of word i (lowercase/capitalized/all caps/numeric/)

1.9 Minimum Bayes Risk Decoding

Often we don’t want to weight errors equally. If we are given a loss function `(y′, y), we seek to minimize
the Bayes risk, that it is instead of selecting the assignment which maximizes the log-likelihood logp(y|x),
we select

hθ(x) = argminEy∼pθ(·|x)[`(ŷ, y)]

This allows us to reweight incorrect labeling as we see fit. Examples include:

a. The 0-1 loss function, which returns 1 only if the tag assignments to a sentence is identical to the true
tag assignment, and 0 otherwise.

`(ŷ, y) = 1− I(ŷ, y)

This loss leads to the following Minimum Bayes Risk decoder:

hθ(x) = argminŷ
∑
y

p(y|x)(1− 1(ŷ, y)) = argmaxŷp(ŷ|x)

This is equivalent to the MAP inference problem.

b. The Hamming loss corresponds to a the number of incorrect variable assignments:

`(ŷ, y) =

V∑
i

(1− I(ŷi, yi)

This leads to the Minimum Bayes Risk decoder:

hθ(x) = argmaxŷip(ŷi|x)

