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1 Introduction

Graphical models can be represented and solved as exponential families. We can decompose a bayesian
network into conditional distribution factors and marginals. The exponential family and Generalized linear
models are used to model the marginals and conditionals respectively for parameter estimation.

2 The Exponential Family

The exponential family includes many familiar distributions like the Gaussian distribution, exponential
distribution, Bernoulli, multinomial, Poisson and gamma distributions. It is the only family of distributions
where the size of the sufficient stastics (more on this below) does not grow with the size of the data. The
family has conjugate priors and is the distribution that is closest to uniform and hence the distribution that
maximizes entropy.

A distribution for a numeric random variable X is an exponential family distribution if you can write it as

plaln) = hz)exp(n” T(z)A(n))

Basically we write the function of the density by seperating all the terms that only belong to X and call it
base measure h(x). The only term that has interaction between the parameters and the function is show as
a linear inner product. Here, 1 is the parameter and T is the sufficient statistic. A(n) is the normalizer.

3 Examples

3.1 The Exponential distribution

The density of the exponential distribution is given by
f(z) =Xe > x>0
=0 otherwise

We can write this equation in the exponential family format as follows.

f(z) = e HosN 1 (> 0)

where h(z)=I(z>0) T(x)=z An) = log(_?l) and n=—X\
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3.2 The Multinomial distribution
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This natural parameter space for the density function is_Rk-1 because of the linear constraint on the
components.

|We can parametrize the distribution using the first K-1 components as below

plzlm) = exp{zxklogm}

k=1

K—1 K—1 K—1
= exp{z:rklogm—k(l—z;rk) log (1— wk)}
k=1 k=1 k=1
K-1 K-1
= exp{Zlog (%) zi + log (1— m)}.
k=1 L—=2 k—1 T k=1

where we have used the fact that 7 =1 — 31" .
From this representation we obtain:

: ;. ! ( o )
. = 10, = |0
i 5 1-— f:_ll T & TK

enk

Zf:l en’

K—1 K
A(n) = —log (1 - Z ﬂ'k) = log (Z e”‘“)
k=1 k=1

T =

4 Moments and the partition function

1. The exponential family has the following property called the moment generating property : the dth
derivative of the log partition equals the dth centered moment of the sufficient statistic.
E.g., the first derivative of the log partition function is the mean of T(X); the 2nd is its variance.

2. This further implies that the log partition function is convex, because its second derivative must be
positive, since variance is always non-negative
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5 Sufficient statistic: What makes it sufficient?

e The sufficient here indicates that T(X) contains all the essential information in X.

e Looking at this from the Bayesian point of view : Sufficiency means that theta is independent of X
when we condition on T(X). If we want to sample from theta, we only need the sufficient statistic and
we don’t need the data itself.

e Looking at this from the Frequentist point of view : if we have the information about the sufficiency
of X, we can draw the distribution without knowing the parameters. We define T(X) as sufficient for
theta if the conditional distribution of X given T(X) is not a function of theta.

e - All the information in X is compressed into a low dimensional representation T(X) which does not
grow with our data.

— Bayesian view @ . @ p(@|T(x),x)=p(0|T(x))
— Frequentist view @ ‘ @ p(x[T(x),0) = p(x|T(x))

6 Estimating parameters with Maximum Likelihood

We obtain the MLE parameters by maximizing the probability of the data given the parameters. This
amounts to Moment matching.

Consider an i.i.d. data set, D = (z1, Za,...,ZN).

KMD%J%(Hﬁwn)+f(zﬁhm)—NMM-

n=1

Taking the gradient with respect to 7 yields:

N
Val =Y T(x,) — NV,A(n),

n=1
and setting to zero gives:

VaA) = 5 S T(en).

n=1

Finally, defining p := E[T(X)], and recalling Eq. (?7), we obtain:
1 N
e = 5 ;T(‘T/‘n)

Because we are dealing with exponential families the log of the distribution opens up and we get an expression
as in the example above. We get a term that is independent of parameters which we can get rid of when
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maximizing with respect to the parameter. Then we have a term that is the inner product between the
parameters and the sufficient statistic which does not grow with the size of the data The remaining factor is
convex and the negative of that will be concave. Hence the overall function is Concave+linear = Concaveand
thus will have a unique maxima.

7 Generalized Linear Models

e The observed input X enters into the model as a linear combination of its elements

e The observed output y is characterized by an exponential family distribution with conditional mean pu
e We have the freedom of choosing v, the conditional distribution of Y, and choosing f, the response
distribution
e The pipeline for the GLM is shown below
0 T : f " 4 . EXP 7
x—
e We estimate the parameters # on the X Y pairs wih Maximum Likelihood

8 Maximum Likelihood for GLMs with canonical response

When the link function makes the linear predictor n the same as the canonical parameter 6 ,we say that we
have a canonical link. The identity is the canonical link for the normal distribution. Some other pairs are
shown below.

p(uin, 8) = h(y, @)erp{%(nT(:r)y — A}

1

The Canonical response function f =1~!, so that 67z directly corresponds to canonical parameter 7).

Model Canonical response function

Gaussian =
Bernoulli pw=1/(14+e1)
multinomial iy =1 le_,.'/.,.
Poisson p=el

gamina n = - 7/_'
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For natural response the MLE can be obtained as below

1(0|D) = Zn log(h(yn)) + Zn(ng”yH = A(nn))

o . _dAm)dnn,
09 e Z(‘I’nyn T d@ ) - Z(yn un,)'tn,

n n

learning can be realized with Stochastic gradient descent as below

9f+1 — Bt o p(yn - #i):’:n

For batch learning in the case of cannonical GLMs we can use the Newton method.

gttt = ¢t — H-1VJ(6)

The hessian matrix is derived below:

where X = [2T], W = diag [i:ﬁ S ‘;:‘7—:] Here, W can be computed by calculating the second derivative
of A7)

9 Learning fully observed BNs

A bayesian network can be decomposed into conditionals and marginals. The conditionals can be modeled
as GLMs and the marginals can be modeled with the exponential family. Thereby parameter learning is
easy because of the decomposability of the bayesian network.

10 Summary

e Exponential family distributions are a candidate for marginal distributions P(Xi)
e MLE has closed form solution for the exponential family

e The benefit of distribution in exponential family is that the maximum likelihood estimation problem
amounts to moment matching problem
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Generalized linear models are convenient for modeling conditionals P(Xi|Y7%)
MLE for GLIMs with canonical response can be solved by SGD
The general algorithm used is Iteratively reweighted least squares

Parameter learning in Fully observed BNs can be done with these distributions as the BN factors
decompose into marginals and conditionals



