Discrete Sequential Models
+

General CRF

Kayhan Batmanghelich

Slides Credit:
Matt Gormley (2016)

“‘A "A /\ __‘

1. Data >. Model

1. Marginal |

2. Partition Function

Z(0) = Z H Yo (zc)
3. MAP Inference z CeC

& = argmax p(x | 0)
€T

Outline

1. Case Study: Supervised Part-of-speech tagging
(NLP)
— Hidden Markov Model (HMM)
— Maximum-Entropy Markov Model (MEMM)
— Linear-chain CRF
— Digression: Minimum Bayes Risk (MBR) Decoding
— Digression: Generative vs. Discriminative

2. Case Study: Image Segmentation
(Computer Vision)
— General CRF (e.g. grid)
— Hidden-state CRF (HCRF)

1. CASE STUDY: SUPERVISED PART-
OF-SPEECH TAGGING (NLP)

Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a)(n), y(”)}ﬁ’zl
e @ @ @ @ @
Sample 2: ‘
e @ @ @ @ @
®
e @ @ @ @ @

Factors have local opinions (= 0)

Each black box looks at some of the tags Y, and words X;

Note: We chose to reuse
v np|d vin|p|d the same factors at
v i1(6(3(4| |v|1]6|3]|4 different positions in the
n 8/ 4(201 n|/8|4|2|01 sentence.
p 1/3/1]3 pi1]3[1]3
d 0.1 8 0] d 0.1 8 0
Y] YZ Y3 Y4 I Y5
R (
= / X, = X,
v|(3|5]|3 Vi3|5[3
ni4 52 n 4 /5|2
p [0.10.1 3 p 0.10.1] 3
d 0.1/0.2/0.1 d 0.1/0.2/0.1

Factors have local opinions (= 0)

Each black box looks at some of the tags Y, and words X;

p(n, v, P, d, n, time, flies, like, an, arrow) — ?
v npl|d v np d
v|i1[(6|3]|4 v|i1[(6|3]|4
n® 4 201 |n|[8|4|2|01
p|1[(3[1]3 p|1[3/1]3
doi18/o|o doi18/oo0
e ()=
Ol vl o (ORI R
0] o)
e _ R
time
V| i3|5|3 V|i3|5|3
n,@s 2 n(4|5|2
p |0.1/0.1| 3 p |0.1/0.1] 3
d 0.1/0.2/0.1 d 0.1/0.2/0.1

Global probability = product of local opinions

Each black box looks at some of the tags Y, and words X;

1
p(n, v, p, d, n, time, flies, like, an, arrow) = 7 (4 *8 * 5 ® 3 *)
v n p|d v n p|d Uh-oh! The probabilities of
V| 1|6[3|4 V| 1|6[3|4 the various assignments sum
ni2(4/2/01 n|/8|4|2|0.1 up to Z > 1.
pl1](3|1[3] |p|1[3]1]|3 So divide them all by Z.
do18 0|0 do18 0|0
S = ()= FEOE = wee
Ol vl o (ORI R
Q : Q
e SEEE O o
V|3|5|3 V| 3|/5(3
ni4,5/2 n 4|52
p [0.1/0.1] 3 p [0.10.1] 3
d 0.10.2/0.1 d 0.10.2/0.1

Markov Random Field (MRF)

Joint distribution over tags Y; and words X,
The individual factors aren’t necessarily probabilities.

1
p(n,v,p,d,n,time,ﬂies,like,an,arrow) = 7(4*8*5*3*)
v npl|d v np d
v|i1/6|3|4 v i1/6|3|4
nl (4 21041 [n/ 8 4 2|0.1
p|1]3]1]3 p|1/3|1]3
do1 8|00 do1 8|0 0
S == 2—(v)
Ol vl o (ORI R
0] : Q
I @ 8 g
v|(3|5]|3 Vi3|5]3
ni4(5(2 n 45 2
p |0.10.1| 3 p |0.1/0.1| 3
d |0.10.2/0.1 d 0.1/0.2/0.1

Bayesian Networks 5ty |y)=/

But sometimes we choose to make them probgbilities.
Constrain each row of a factor to sum to one. Now Z = 1.

p(n, Vv, P, d, n, time, flies, like, an, arrow) — %(3 *8*F 2% 5 ®)

12

Markov Random Field (MRF)

Joint distribution over tags Y, and words X,

l

1
p(n,v,p,d,n,time,ﬂies,like,an,arrow) = 7(4*8*5*3*)
v npl|d v np d
v|i1/6|3|4 v i1/6|3|4
nl (4 21041 [n/ 8 4 2|0.1
p|1]3]1]3 pl1|/3]1]3
do1 8|00 do1 8|0 0
S == ()
Ol vl o (ORI R
o) : Q
v|(3|5]|3 Vi3|5]3
n 4|52 n 4|52
p |0.10.1| 3 p |0.1/0.1| 3
d |0.10.2/0.1 d 0.10.2/0.1 13

Conditiona anfoc%légld (CRF)

Conditional distribution over tags Y, given words x;.
The factors and Z are now specific to the sentence x.

p(n,v,p,d,njltime,ﬂies,like,an,arrow) = % (4*8*5*3*)
v npl|d v np d
V| i1|6|3]|4 v| 1|63
ni (4 2041 n(8|(4 2
pl1]3]1 11311
do1 8 o 1 8|0

@i@ -

0.1
0.1

A E\E

— _ & '
C%(l\‘/]\dxi}cional R n/clégmilfield (aRﬁ"[&)

Conditional distribution over tags Y, given words x;.
The factors and Z are now specific to the sentence x.

1
p(n, v,p,d,n | time, flies, like, an, arrow) = 7 (4 *8 % 5 * 3 *)
vin|p|d v in pl|d We say the variables X; have been
“clamped” to their values x..
v i1]/6[(3/4]| |v|1/6|3]|4
n %/4(2/01 n 8 4|201 This is equivalent to multiplying in an
“evidence potential” which is a point
pP|1]3]|1|3 p|1/3/1,3 mass with all its weight on X, = x;
do.18 0|0 do.18 0|0

<START>

Forward-Backward Algorithm

* Sum-product BP on an HMM is called the
forward-backward algorithm

* Max-product BP on an HMM is called the
Viterbi algorithm

Learning and Inference Summary

For discrete variables:

Learning Marginal MAP
Inference Inference

Forward- Viterbi
backward

17

CRF Tagging Model

preferred tags

CRF Tagging by Belief Propagation

-ﬁ(’& %)
Forward algorithm = %ithm =
message passing assi
(matrix-vector products) r prgiucts)

message
o b
v |7 Vi3
---‘nz n6—|-|-|-
a1 a1

find preferred tags

* Forward-backward is a message passing algorithm.

* It’s the simplest case of belief propagation.
19

So Let’s Review Forward-Backward ...

find preferred tags

So Let’s Review Forward-Backward ...

/ /\ 2

V

s | s P e
ﬁ\@\ oA T -
Y N

A
y. N\

find preferred tags
* Show the possible values for each variable

So Let’s Review Forward-Backward ...

Y, Y;

o\ e

AN
<> <>
@{/K A
NZ \A/ NV
%

find preferred tags

* Let’s show the possible values for each variable

* One possible assignment

22

So Let’s Review Forward-Backward ...

A\\ O e
L <>

/]
B
Vs YL ONS .:’A

>
. Y, N\ A/ AN .
N
find preferred tags

* Let’s show the possible values for each variable
* One possible assignment
 And what the 7 factors think of it ...

23

Viterbi AIgonP(hxr% Mo%g’Pyahng_Le,Asggnment

o 7
J @Y Vi PNE '44
AR | AW o

find preferred tags

* Sop(van)F(1/Z) *)product of 7 numbers
* Numbers assoeiated with edges and nodes of path
* Most probable assignment = path with highest product

Viterbi Algorithm: Most Probable Assignment

/N
Q)

AN

o N
W @,\‘»@ Wiy (v) Z \< '4‘
B N,
I
A N
a
find preferred

tags

* Sop(van)=(1/Z2)* product weight of one path

25

Forward-Backward Algorithm: Finds Marginals

AEA
N v 2
‘\' A
AR | AW | A4
| ’ ‘ \‘ |
2] A\ N4
_/

N
7/

find preferred tags

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl21t of A 26

Forward-Backward Algorithm: Finds Marginals

AT AW AT LA

A
Y Y Y

find preferred tags

2

—
—

SE N

/

" ——

Y3
v
a

—

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl21t of A 27

Forward-Backward Algorithm: Finds Marginals

r@%\ /&

o A
A2

SE N

find preferred tags
* Sop(van)=(1/Z2)* product weight of one path

* Marginal probablllt p(Y,=a)
=(1/2) * totalwelgl21t of A

Forward-Backward Algorithm: Finds Marginals

AT AW AT LA

A
Y Y Y

find preferred tags

2

—
—

SE N

/

" ——

Y3
v
a

—

* Sop(van)=(1/Z2)* product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl21t of A 29

Forward-Backward Algorithm: Finds Marginals

Y;
ZEN
\Y

a

find preferred tags
= total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

—

SE N

——

30

Forward-Backward Algorithm: Finds Marginals

A<

| S~
IS AN
| %
v} '
find preferred tags
B,(n) =total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) 4

D (B S
Forward-Backward% inds Marginals
L e > KM

total weigh - = total weight of
- path pref:xe&/ path suffixes (

Product gives atx+ay+a\z+b3<+by+bz+cx+cy+cz = total weight of paths

POL=n) = °<,_Q\)f () NAY

Forward-Backward Algorlthm Finds Margina

m

5

preferred

total weight of o/l paths throughA
= oM v fn)

“belief that ¥, =n”

33

Forward-Backward Algorithm: Finds Marginals

A\ “belief that ¥, =
I X/
/1

| “belief that Y, =

preferred

total weight of A

= (V) vip(v) B,(v)

34

Forward-Backward Algorithm: Finds Marginals

“belief that ¥, =v”

“belief that ¥, =n"

“Ba)

“belief that ¥, =a”

sum =7
V(@) (total probability
B of all paths)

preferred

total weight of A

= @) vip(d) B,(a)

35

Hidden Markov Model se:
e ;0)=)—(¥)

®®® O © © ®

T 2

Shortcomings of Hidden Markov sece

Model (1): locality of features °

¢ HMM models capture dependences between each state and only its
corresponding observation

e NLP example: In a sentence segmentation task, each segmental state may
depend not just on a single word (and the adjacent segmental stages), but also
on the (non-local) features of the whole line such as line length, indentation,
amount of white space, etc.

e Mismatch between learning objective function and prediction

objective function

e HMM learns a joint distribution of states and obs
© Eric Xing @ CMU, 2005-2015 38

prediction task, we need the conditional probabil

A Solution: X i@"®

Maximum Entropy Markov Model (MEMM) °

N — 7

e Why not providing the full observation sequence explicitly

e More expressive than HMMs (not the direction of arrow — no causal interpretation,
X is just covariates)

° model

e Completely ignores modeling P(X): saves modeling effort
e Learning objective function consistent with predictive function: P(Y|X)

© Eric Xing @ CMU, 2005-2015 39

(442 X 332,
Then, shortcominéps\j'o\HVIEMM (and 3T

HMM) (2): thf Label Ic‘)/,las prio/blem o

Observatlon 1 Observatlon 2 Observation 3 Observation 4

0.45 0.5
- State 1 =A =A

State 3
State 4

wes A YA A A

What the local transition probabilities say:

» State 1 almost always prefers to go to state 2

» State 2 almost always prefers to stay in state 2

MEMM: the Label bias problem

Observation 1 Observation servation /A%bservatlon 4
State 1 A = A
0.55 :
State 2 A A
0.2 0.1 0.2
ses /N A\ A\ aN
0.2 0.1 0.2
sated A\ A\ A\ A
0.2 0.3 0.2
Path Probability
StateS 515159 |

© Eric Xing @ CMU, 2005-2015 41

MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3 Observation 4

0.4 0.45 0.5
state 1 £\ /O /N A\
0.2 0.6 5
0.2
satez A\ A\ A\ A\
0.2 0.1 0.2
State 3 A A A A
0.2 0.1 0.2
sated A\ A A\ A\
0.2 0.3 0.2
Path Probability
State S 1 515 0.4 x 0.45 x 0.5 = 0.090

© Eric Xing @ CMU, 2005-2015 42

MEMM: the Label bias problem oo

Observation 1 Observation 2 Observation 3 Observation 4

0.4 0.45 0.5
saet /N A\ A A

sz (g Ag A
sees A\ A \A \A

state 4 /\ A A\ ‘A

0.3 0.2
Path Probability
State S 1Sy 5 15 0.4 x 0.45 x 0.5 = 0.090
222>2->2 0.2 x 0.30 x 0.3 = 0.018

© Eric Xing @ CMU, 2005-2015 43

MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1
0.4

Observation 2 Observation 3

0.2
0.2

Observation 4
0.5

‘ii 0.45 ‘ii

0.6

A\
AN\
A\
A\

A

A SAC A
2 0.1 0.2
0.2 A 0.1 A 0.2 A
0.2 03 0.2

Path Probability
1212>1->1 0.4 x 0.45 x 0.5 = 0.090
22>2>2->2 0.2 x 0.30 x 0.3 = 0.018
1222>1->2 0.6 x 0.20 x 0.5 = 0.060

© Eric Xing @ CMU, 2005-2015

44

MEMM: the Label bias problem oo

Observation 1 Observation 2 Observation 3 Observation 4

04 0.45 0.5
state 1 /N TN LN\ A\
0.2 0.6 5
0.2
sate2 A\ /O /O A
0.2 0.1 0.2
sates /N A\ A\ aN
0.2 0.1 0.2
sate 4 A\ A\ A\ A
0.2 0.3 0.2
Path Probability
State s 55 0.4 x 0.45 x 0.5 = 0.090
2525252 0.2 x 0.30 x 0.3 = 0.018
1525152 0.6 x 0.20 x 0.5 = 0.060
1>1>2>2 0.4 x 0.55 x 0.3 = 0.066

© Eric Xing @ CMU, 2005-2015 45

MEMM: the Label bias problem

Observation 1 uoservatlon 3 Observ
0 4
smez A A A A\

State 3 A
A\

v

0.2

0.2

State 4

0.3 0.2
Path Probability

2222222 0.2 x 0.30 x 0.3 = 0.018
1222122 0.6 x 0.20 x 0.5 = 0.060
1212>2->2 0.4 x 0.55 x 0.3 = 0.066

© Eric Xing @ CMU, 2005-2015 46

Observation 1

O.oc‘x 0.6 —_—,Q,bd\"g::.
MEMM: the Label bias problem

Observation 2 Observation 3 Observation 4

2222222

Probability

0.2 x 0.30 x 0.3 = 0.018

12>222>1->2

/
0.6 x 0.20 x 0.5 =4.060

12>212>2->2

0.4 x 0.55 x 0.3 = 97066

© Eric Xing @ CMU, 2005-2015

47

MEMM: the Label bias problem

Observation 1 Observation 2 Observation 3

Observation 4

State 4

Probability
2222222 0.2 x 0.30 x 0.3 = 0.018
1222122 0.6 x 0.20 x 0.5 = 0.060
1212>2->2 0.4 x 0.55 x 0.3 = 0.066

© Eric Xing @ CMU, 2005-2015

48

Solution: coce
Do not normalize probabilities locally

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2
State 3

State 4

state5 A\ /N

From local probabilities...

© Eric Xing @ CMU, 2005-2015 49

Solution: secs
Do not normalize probabilities locally | ¢

Observation 1 Observation 2 Observation 3 Observation 4

20 . 30 . 5 .
10 30 20 20 10 5
20 30 30
10 10 20
20 10 20
0

State 2 A
State 3 A
State 4 A
30 20
State 5 A

From local probabilities to local potentials!

State 1

>
3

>

D
<

>

>
P

D>

D>
D

D

>
P

>

States with lower transitions do not have an unfair advantage!

© Eric Xing @ CMU, 2005-2015 50

From MEMM :

s G@@g)}"@

n - exp(WTf(yia Yi—1, Xl:n))
P(yilxin) = []P@ilyi-rxia) =] (Z i)
1=1 T ”

=1

N

EAOG B 32
From MEMM to Linear-m e
T PRk, 5) — POYPRLIX)POSIK)

P (k)

X
- Hexp(WTfE%%i\;én)

1 n
P(Yl:n|xli?’b) - Z(Xl) ¢(yi7yi—17xltn) - (
M i=1

X1:ns

e CRF is a partially directed model
e Discriminative model like MEMM

e Unlike MEMM, each factor is not normalized. Hence, usage of global Z(x)
overcomes the label bias problem of MEMM

e Models the dependence between each state and the entire observation sequence
(like MEMM)

© Eric Xing @ CMU, 2005-2015 52

X 7‘)/ /fXP @ Toy fAW)M*??

Linear-chain CRE(®) 7 9 ;))
e Linear-chain Conditteral Random Field pargr/rfeﬁld‘élﬁn | N o

where Z(x, A1) = > exp(d_(ATE(yi9i-1,%) + 1" 8(y:, %))

A wc(yy ;x/ f V' ﬁ('ﬂl Yorr Yo

©E X%%CMU 2005-201 53

Whiteboard

e CRF model
* CRF data log-likelihood
e CRF derivatives

(side-by-side with MRF)

Learning and Inference Summary

For discrete variables:

Learning

Gradient based -
decomposes and doesn’t
require inference (GLM)

Marginal MAP
Inference Inference

Forward- Viterbi
backward

55

Slide adapted from 600.465 - Intro to NLP - J. Eisner

Features

General idea:
* Make a list of interesting substructures.

 The feature f,(x,y) counts tokens of kt"
substructure in (x,y).

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

fxy)

Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”

Weight of this feature is like
log of an emission probability
inan HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”
Count of tag P

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ...

N V P D N
0Tlme1f||eszllke3an4arrow5

Count of tag P as the tag for “like”
Count of tag P
Count of tag P in the middle third of the sentence

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

= -&Cﬁp Mfl
Features for taggmg

“)v
N P D N

Time flles like an arrow

Count of tag P as the tag for “like”
Count of tag P
Count of tag P in the middle third of the sentence

Count of tag bigram V P | Weight of this feature is like
log of a transition probability
inan HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”

Count of tag P

Count of tag P in the middle third of the sentence
Count of tag bigram V P

Count of tag bigram V P followed by “an”

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”

Count of tag P

Count of tag P in the middle third of the sentence
Count of tag bigram V P

Count of tag bigram V P followed by “an”

Count of tag bigram V P where P is the tag for “like”

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ...

N V P D N
Time flies like an arrow

Count of tag P as the tag for “like”

Count of tag P

Count of tag P in the middle third of the sentence

Count of tag bigram V P

Count of tag bigram V P followed by “an”

Count of tag bigram V P where P is the tag for “like”
Count of tag bigram V P where both words are lowercase

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

Features for tagging ... 7[(%3&,‘4;1)

N V P D N
Time flies like an arrow

Count of tag trigram N V P?

A bigram tagger can only consider within-bigram features:
only look at 2 adjacent blue tags (plus arbitrary red context).

So here we need a trigram tagger, which is slower.
Why? The forward-backward states would remember fwo previous

tags.
@ P ’

We take this arc once per N V P triple,
so its weight is the total weight of
the features that fire on that triple.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,vy)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,y).

For position i in a tagging, these might include:
Full name of tag i
First letter of tag i (will be “N” for both “NN” and “NNS”)
Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)
Full name of word i
Last 2 chars of word i (will be “ed” for most past-tense verbs)
First 4 chars of word i (why would this help?)
“Shape” of word i (lowercase/capitalized/all caps/numeric/...)

Whether word i is part of a known city name listed in a
“gazetteer”

Whether word i appears in thesaurus entry e (one attribute per e)
Whether i is in the middle third of the sentence

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=1, we see an instance of “template/=(BOS,N,-es)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=2, we see an instance of “template/7=(N,V,-ke)"”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=3, we see an instance of “template/7=(N,V,-an)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At i=4, we see an instance of “template7=(P,D,-ow)"
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many
template? features will fire:

N V P D N
Time flies like an arrow

At =5, we see an instance of “template7=(D,N,-)"
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,y)?

Think of some attributes (“basic features™) that you can
compute at each position in (x,Y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).
This template gives rise to many features, e.q.:
score(x,y) = ...
+ 6[“template7=(P,D,-ow)”] * count(“template7=(P,D,-ow)”)
+ 6[“template7=(D,D,-xx)”] * count(“template7=(D,D,-xx)")
+ ...

With a handful of feature templates and a large vocabulary, you
can easily end up with millions of features.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner

How might you come up with the features
that you will use to score (x,vy)?

Think of some attributes (“basic features™) that you can
compute at each position in (Xx,y).

Now conjoin them into various “feature templates.”

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue.

Given an input x, a feature that only looks at red will contribute
the same weight to score(x,y,) and score(x,y-).

So it can’ t help you choose between outputs

4

Generative vs. Discriminative

Liang & Jordan (ICML 98%
2008) compares HMM 96% 95-60%
and CRF with identical 94% 9350k
features 924 1 T 89.80% “ HMM
e Dataset 1: (Real) zg; | | ~ 87.90% CRF
— WSJ Penn Treebank g6y | | o
(38K train, 5.5K test) gq7 | —
— 45 part-of-speech tags Dataset 1 Dataset 2
» Dataset 2: (Artificial)

— Synthetic data
generated from HMM
learned on Dataset 1
(1K train, 1K test)

e Evaluation Metric:
Accuracy

CRFs: some empirical results

e Parts of Speech tagging

model | error oov error
HMM | 5.69% 45.99%
MEMM | 6.37% 54.61%
CRF | 5.55% 48.05%

MEMMT™ | 481% 26.99%
CRFT™ | 427% 23.76%

T Using spelling features

e Using same set of features: HMM >=< CRF > MEMM
e Using additional overlapping features: CRF* > MEMM* >> HMM

© Eric Xing @ CMU, 2005-2015 75

Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss

under the model’s distribution C% PW’ ~)

he(x) = argmin [prg() [€(Y, %)]

Yy

argmin » pe(y | ©)((Y, y)
£ J

F

Minimum Bayes Risk Decoding

Consider some example loss functions:

Minimum Bayes Elsk Decé{

Consider some example loss functions:

2. CASE STUDY: IMAGE
SEGMENTATION (COMPUTER VISION)

Other CRFs

e So far we have discussed only 1-
dimensional chain CRFs

e Inference and learning: exact
e We could also have CRFs for
arbitrary graph structure
e E.g: Grid CRFs
e Inference and learning no longer tractable

D)
2
D)

e
o0

o
o
K0=<:>\‘(

e Approximate techniques used
MCMC Sampling
Variational Inference

.
*ae
*an

Loopy Belief Propagation
e We will discuss these techniques soon

© Eric Xing @ CMU, 2005-2015 80

Applications of CRF In Vision

Stereo Matching Image Restoration

FTTFT HON. ABRATIAM LINCOLN, President of United States.

S

) P
B : '
v

I— L)

Eric Xing @ CMU, 2005-2015 81

Application: Image Segmentation

di(y;. x) € R¥V90: ocal image features, e.g. bag-of-words
— (wj, ¢i(y;, x)): local classifier (like logistic-regression)

bi i (yi.yi) = [yi = y;] € Rl: test for same label
— (wij, ®ij(vi.y;)): penalizer for label changes (if w;; > 0)

combined: argmax, p(y|z) is smoothed version of local cues

original local classification local + smoothness

© Eric Xing @ CMU, 2005-2015 82

Application: Handwriting Recognition

bi(yi, x) € R¥O0: image representation (pixels, gradients)
— (w4, ¢i(yi, x)): local classifier if z; is letter y;

Gij (Ui, yj) = ey, @ ey, € R#20: letter/letter indicator
— (wij, ¢ij(vi,y;j)): encourage/suppress letter combinations

combined: argmax, p(y|x) is " corrected” version of local cues

Q Output 0 (0V)—CF)—(8) T) Output
local classification local + " correction”

© Eric Xing @ CMU, 2005-2015 83

Application: Pose Estimation

input output

head

PS model
efficient
inference

rgarm

torso

—

llarm rlarm

| state space: L=[l, b, i, I
part support sizes: [h, w]

.//
,/I
- 4/
1
'
-
.
\
N,
.
.

p(l|z) ox exp [2 quszj li,lj, z) |+ ZIGT@ (L, :z:):] _ AT o)

Penalizes unrealistic Local classifier for
poses each part

argmax,, p(y|x) is cleaned up version of local prediction

Cascaded Models for Articulated Pose Estimation, B. Sapp, A. Toshev, B. Taskar

84

Feature Functions for CRF in Vision

®i(y;, x): local representation, high-dimensional
(w;, ¢i(y;, x)): local classifier

¢i i(yi,y;): prior knowledge, low-dimensional
— (wij, dij(yi,yj)): penalize outliers
learning adjusts parameters:

» unary w;: learn local classifiers and their importance
» binary w;;: learn importance of smoothing/penalization

argmax, p(y|x) is cleaned up version of local prediction

© Eric Xing @ CMU, 2005-2015 86

Case Study: Image Segmentation

e Image segmentation (FG/BG) by modeling of interactions btw RVs

e Images are noisy.
e Objects occupy continuous regions in an image.

[Nowozin,Lampert 2012]

Input image Pixel-wise separate Locally-consistent
optimal labeling joint optimal labeling
Unary Term Pairwise Term
P A \ Y: labels
Y* = aroma (v..X) + vyl X: data (features)
gmax| > V(v X)+ 3, X Vvl o
Y0117 | ies i€S JEN;

N;: neighbors of pixel i
© Eric Xing @ CMU, 2005-2015 87

Grid CRF

* Suppose we want to image segmentation using a grid model

N N
O OuOnO
' on
OnOuOnO
-
OnOuOnO
N

!

" =

B
.
!

Grid CRF

* Suppose we want to image segmentation using a grid model

89

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

B -

" =

-l
-l

.
.

N N
OnOnOnO
.
OnOnOnO

N
OuOnOnO
N

!

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

-

" =

-l
-l

N
.
.

I
OnOnOnO
.
OnOnOnO

N
OuOnOnO
N

!

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

OnOn(
. "o

" =

.
!

OuOnOnO
-

OuOnOnO
N

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

B B N
OnOn(
' n o®
OnOn(
* n on

" =

!

OuOnOnO
N

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

X
.
-

E B
OnOn(
H N
Ou(Om(
I
OnOn(
E B

!

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

95

Grid CRF

Suppose we want to image segmentation using a grid model
What happens when we run variable elimination?

— .

96

Grid CRF

* Suppose we want to image segmentation using a grid model
* What happens when we run variable elimination?

97

Case Study: Object Recognition

Data consists of images x and labels y.

\ \ X
\ » L

leopard

98

Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

leopard

Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

* zisnotobserved at
train or test time

100

Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

101

Hidden-state CRFs

Data: D = {ic(n)7 y(n)}fq\le

1
Joint model: p@(yaz | 213) — Z(CE 9) H¢a(ya7za,$)

Marginalized model: Pg (y | x) Zpg Y,z | x)

102

Hidden-state CRFs

Data: D = {&™),y"™} L,

1
Joint model: p@(yaz | ZU) — Z(w 0) H¢a(ya7za,$)

Marginalized model: Po (y | x) Zpg Y,z | x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

(0D
(d9|) _ 3 (]Ezwpe(.w(n))[fj(y(n),z)] _]Ey,zwpe(_,,)[fj(y,z)D

n=1

N
Zy: Y (?pe (Zo | y(n) (ygn),za Z ?G(yavzazfa,j(ywza))

n=1 « Za Yo, 2R

103

Learning and Inference Summary

Learning Marginal MAP Inference
Inference
HMM Just counting Forward- Viterbi
backward
MEMM Gradient based - Forward- Viterbi
decomposes and doesn’t backward
require inference (GLIM)
Linear-chain Gradient based — doesn’t Forward- Viterbi
CRF decompose because of Z(x) | backward

and requires marginal
inference

General CRF Gradient based — doesn’t (approximate (approximate
decompose because of Z(x) | methods) methods)
and requires (approximate)
marginal inference

HCRF Gradient based — same as (approximate (approximate

General CRF

methods)

methods)

Summary

HMM:
— Pro: Easy to train
— Con: Misses out on rich features of the observations
MEMM:
— Pro: Fast to train and supports rich features
— Con: Suffers (like the HMM) from the label bias problem
Linear-chain CRF:
— Pro: Defeats the label bias problem with support for rich features
— Con: Slower to train
MBR Decoding:

— the principled way to account for a loss function when decoding from a probabilistic model

Generative vs. Discriminative:
— gen. is better if the model is well-specified
— disc. is better if the model is misspecified

General CRFs:

— Exact inference won’t suffice for high treewidth graphs
— More general topologies can capture intuitions about variable dependencies

HCRF:

— Training looks very much like CRF training
— Incorporation of hidden variables can model domain specific knowledge

