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1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample 
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample 
4:

with youtime will see

n v p n nSample 
3:

flies withfly their wings

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

1. Marginal Inference 

2. Partition Function 

x̂ = argmax
x

p(x | ✓)
3. MAP Inference 
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Today’s Lecture…

…is really about Conditional 
Random Fields (CRFs), but in 
the guise of two case studies:

1. Part-of-speech (POS) 
tagging

2. Image segmentation



Outline
1. Case Study: Supervised Part-of-speech tagging 

(NLP)
– Hidden Markov Model (HMM)
– Maximum-Entropy Markov Model (MEMM)
– Linear-chain CRF
– Digression: Minimum Bayes Risk (MBR) Decoding
– Digression: Generative vs. Discriminative

2. Case Study: Image Segmentation 
(Computer Vision)
– General CRF (e.g. grid)
– Hidden-state CRF (HCRF)
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1. CASE STUDY: SUPERVISED PART-
OF-SPEECH TAGGING (NLP)

HMMs, MEMMs, Linear-chain CRFs
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)



X1 X2 X3 X4 X5

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0Y0

<START>

Factors have local opinions (≥ 0)
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Each black box looks at some of the tags Yi and words Xi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fli
es

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Note: We chose to reuse 
the same factors at 

different positions in the 
sentence.



Factors have local opinions (≥ 0)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

Each black box looks at some of the tags Yi and words Xi

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

p(n, v, p, d, n, time, flies, like, an, arrow)     =      ?



Global probability = product of local opinions
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

Each black box looks at some of the tags Yi and words Xi

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Uh-oh! The probabilities of 
the various assignments sum 

up to Z > 1.
So divide them all by Z.



Markov Random Field (MRF)

11

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Yi and words Xi
The individual factors aren’t necessarily probabilities.



time flies like an arrow

n v p d n<START>

Bayesian Networks
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But sometimes we choose to make them probabilities.  
Constrain each row of a factor to sum to one.  Now Z = 1.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)



Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m

e
fli

es
lik

e
…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Yi and words Xi



Conditional Random Field (CRF)

14time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Yi given words xi.
The factors and Z are now specific to the sentence x.

p(n, v, p, d, n | time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)



Conditional Random Field (CRF)

15time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0
<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Yi given words xi.
The factors and Z are now specific to the sentence x.

p(n, v, p, d, n | time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

We say the variables Xi have been 
“clamped” to their values xi.

This is equivalent to multiplying in an 
“evidence potential” which is a point 

mass with all its weight on Xi = xi



Forward-Backward Algorithm

• Sum-product BP on an HMM is called the 
forward-backward algorithm

• Max-product BP on an HMM is called the 
Viterbi algorithm
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Learning and Inference Summary

For discrete variables:
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Learning Marginal 
Inference

MAP 
Inference

HMM Forward-
backward

Viterbi

MEMM Forward-
backward

Viterbi

Linear-chain 
CRF

Forward-
backward

Viterbi



Y2 Y3Y1

CRF Tagging Model
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun
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……

find preferred tags

CRF Tagging by Belief Propagation

v 0.3
n 0
a 0.1

v 1.8
n 0
a 4.2α βα

belief

message message

v 2
n 1
a 7

• Forward-backward is a message passing algorithm.
• It’s the simplest case of belief propagation.

v 7
n 2
a 1

v 3
n 1
a 6

β
v n a

v 0 2 1
n 2 1 0
a 0 3 1

v 3
n 6
a 1

v n a
v 0 2 1
n 2 1 0
a 0 3 1

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)



Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

So Let’s Review Forward-Backward …



Y2 Y3Y1

So Let’s Review Forward-Backward …
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v

n

a

v

n

a

v

n

a

START END

• Show the possible values for each variable
find preferred tags



Y2 Y3Y1
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v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment

find preferred tags

So Let’s Review Forward-Backward …



Y2 Y3Y1
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v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

find preferred tags

So Let’s Review Forward-Backward …



Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

ψ {0,1
}(S

TART,v)

ψ
{1,2} (v,a)

ψ {2,3}
(a,n)

ψ{3,4}(a,END)
ψ{1}(v)

ψ{2}(a)

ψ{3}(n)



Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path

ψ {0,1
}(S

TART,v)

ψ
{1,2} (v,a)

ψ {2,3}
(a,n)

ψ{3,4}(a,END)
ψ{1}(v)

ψ{2}(a)

ψ{3}(n)



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through v



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n



α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags



= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(found by dynamic programming: matrix-vector products)



α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



total weight of all paths through
= × ×

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

n

ψ{2}(n)

α2(n) b2(n)

α2(n) ψ{2}(n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the unigram 
factor at this variable.



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

n

a

v

n

a

START END

find preferred tags

ψ{2}(v)

α2(v) b2(v)

“belief that Y2 = v”v

“belief that Y2 = n”

total weight of all paths through
= × ×

v

α2(v) ψ{2}(v) b2(v)



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

ψ{2}(a)

α2(a) b2(a)

“belief that Y2 = a”

“belief that Y2 = v”

“belief that Y2 = n”

sum = Z
(total probability
of all paths)

v 1.8
n 0
a 4.2

v 0.3
n 0
a 0.7

divide 
by Z=6 to 

get 
marginal 

probs

total weight of all paths through
= × ×

a

α2(a) ψ{2}(a) b2(a)



Hidden Markov Model
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Y1 Y2 … … … Yn

X1 X2 … … … Xn

P (x1:n,y1:n) =
nY

i=1

P (xi|yi)P (yi|yi�1)

START



Shortcomings of Hidden Markov 
Model (1): locality of features

l HMM models capture dependences between each state and only its 
corresponding observation  
l NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

l Mismatch between learning objective function and prediction
objective function
l HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 38

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START



A Solution:
Maximum Entropy Markov Model (MEMM)

l Why not providing the full observation sequence explicitly
l More expressive than HMMs (not the direction of arrow – no causal interpretation, 

X is just covariates)

l Discriminative model
l Completely ignores modeling P(X): saves modeling effort

l Learning objective function consistent with predictive function: P(Y|X)

© Eric Xing @ CMU, 2005-2015 39

Y1 Y2 … … … Yn

X1:n

START



Then, shortcomings of MEMM (and 
HMM) (2): the Label bias problem

© Eric Xing @ CMU, 2005-2015 40

What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefers to stay in state 2

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.6
0.2

0.2

0.2

0.2

0.2

0.45

0.55
0.2

0.3

0.1

0.1

0.3

0.5

0.5
0.1

0.3

0.2

0.2

0.2



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem

© Eric Xing @ CMU, 2005-2015 41

Path Probability
1 à 1 à 1 à 1



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path

Yet locally it 
seems state 1 
wants to go to 
state 2 and state 
2 wants to 
remain in state 2.



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

MEMM: the Label bias problem
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Path Probability
1 à 1 à 1 à 1 0.4 x 0.45 x 0.5 = 0.090
2 à 2 à 2 à 2 0.2 x 0.30 x 0.3 = 0.018 

1 à 2 à 1 à 2 0.6 x 0.20 x 0.5 = 0.060
1 à 1 à 2 à 2 0.4 x 0.55 x 0.3 = 0.066

Most likely path

Yet locally it 
seems state 1 
wants to go to 
state 2 and state 
2 wants to 
remain in state 2. Why does this happen?

• State 1 has only two transitions but state 2 has 5

• Average transition probability from state 2 is lower

This is the Label Bias Problem in MEMM: a preference 
for states with lower number of transitions over others



Solution: 
Do not normalize probabilities locally
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From local probabilities…

• States with lower transitions do not have an unfair advantage!

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2



State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4

Solution: 
Do not normalize probabilities locally
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From local probabilities to local potentials!
States with lower transitions do not have an unfair advantage!
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From MEMM ….
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Y1 Y2 … … … Yn

x1:n

START



From MEMM to Linear-chain CRF

l CRF is a partially directed model
l Discriminative model like MEMM
l Unlike MEMM, each factor is not normalized. Hence, usage of global Z(x) 

overcomes the label bias problem of MEMM
l Models the dependence between each state and the entire observation sequence 

(like MEMM)
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Y1 Y2 … … … Yn

x1:n

START



Linear-chain CRF
l Linear-chain Conditional Random Field parametric form:
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Y1 Y2 … … … Yn

x1:n

START

unarybinary



Whiteboard

• CRF model
• CRF data log-likelihood
• CRF derivatives

(side-by-side with MRF)
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Learning and Inference Summary

For discrete variables:

55

Learning Marginal 
Inference

MAP 
Inference

HMM Just counting Forward-
backward

Viterbi

MEMM Gradient based –
decomposes and doesn’t 
require inference (GLM)

Forward-
backward

Viterbi

Linear-chain 
CRF

Gradient based – doesn’t 
decompose because of 
Z(x) and requires 
marginal inference

Forward-
backward

Viterbi



Features

General idea:
• Make a list of interesting substructures.
• The feature fk(x,y) counts tokens of kth

substructure in (x,y).
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Slide adapted from 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag P as the tag for �like�

Time flies like an arrow
N V P D N

Weight of this feature is like 
log of an emission probability
in an HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence

Time flies like an arrow
N V P D N
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Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P

Time flies like an arrow
N V P D N

Weight of this feature is like 
log of a transition probability
in an HMM

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�

Time flies like an arrow
N V P D N
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Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�
§ Count of tag bigram V P where P is the tag for �like�

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag P as the tag for �like�
§ Count of tag P
§ Count of tag P in the middle third of the sentence
§ Count of tag bigram V P
§ Count of tag bigram V P followed by �an�
§ Count of tag bigram V P where P is the tag for �like�
§ Count of tag bigram V P where both words are lowercase

Time flies like an arrow
N V P D N

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Features for tagging …

§ Count of tag trigram N V P?
§ A bigram tagger can only consider within-bigram features:

only look at 2 adjacent blue tags (plus arbitrary red context).
§ So here we need a trigram tagger, which is slower. 
§ Why? The forward-backward states would remember two previous 

tags.

Time flies like an arrow
N V P D N

N V V PP

We take this arc once per N V P triple,
so its weight is the total weight of 
the features that fire on that triple.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 

compute at each position in (x,y).

For position i in a tagging, these might include:

§ Full name of tag i

§ First letter of tag i (will be �N� for both �NN� and �NNS�)

§ Full name of tag i-1 (possibly BOS); similarly tag i+1 (possibly EOS)

§ Full name of word i

§ Last 2 chars of word i (will be �ed� for most past-tense verbs)

§ First 4 chars of word i (why would this help?)

§ �Shape� of word i (lowercase/capitalized/all caps/numeric/…)

§ Whether word i is part of a known city name listed in a 

�gazetteer�

§ Whether word i appears in thesaurus entry e (one attribute per e)

§ Whether i is in the middle third of the sentence

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Time flies like an arrow
N V P D N

How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many 
template7 features will fire:

At i=1, we see an instance of “template7=(BOS,N,-es)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many 
template7 features will fire:

Time flies like an arrow
N V P D N

At i=2, we see an instance of “template7=(N,V,-ke)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many 
template7 features will fire:

Time flies like an arrow
N V P D N

At i=3, we see an instance of “template7=(N,V,-an)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many 
template7 features will fire:

Time flies like an arrow
N V P D N

At i=4, we see an instance of “template7=(P,D,-ow)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

At each position of (x,y), exactly one of the many 
template7 features will fire:

Time flies like an arrow
N V P D N

At i=5, we see an instance of “template7=(D,N,-)”
so we add one copy of that feature’s weight to score(x,y)

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).
This template gives rise to many features, e.g.:

score(x,y) = … 
+ θ[�template7=(P,D,-ow)�] * count(�template7=(P,D,-ow)�)
+ θ[�template7=(D,D,-xx)�] * count(�template7=(D,D,-xx)�)
+ …

With a handful of feature templates and a large vocabulary, you 
can easily end up with millions of features.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



How might you come up with the features 
that you will use to score (x,y)?

1. Think of some attributes (�basic features�) that you can 
compute at each position in (x,y).

2. Now conjoin them into various �feature templates.�

E.g., template 7 might be (tag(i-1), tag(i), suffix2(i+1)).

Note: Every template should mention at least some blue. 
§ Given an input x, a feature that only looks at red will contribute 

the same weight to score(x,y1) and score(x,y2).  
§ So it can�t help you choose between outputs y1, y2.

Slide courtesy of 600.465 - Intro to NLP - J. Eisner



Generative vs. Discriminative

Liang & Jordan (ICML 
2008) compares HMM
and CRF with identical 
features
• Dataset 1: (Real)

– WSJ Penn Treebank 
(38K train, 5.5K test)

– 45 part-of-speech tags

• Dataset 2: (Artificial)
– Synthetic data 

generated from HMM 
learned on Dataset 1 
(1K train, 1K test)

• Evaluation Metric: 
Accuracy
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93.50%

89.80%

95.60%

87.90%

84%

86%

88%

90%

92%

94%
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98%

Dataset 1 Dataset 2

HMM

CRF

M
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CRFs: some empirical results
l Parts of Speech tagging

l Using same set of features: HMM >=< CRF > MEMM
l Using additional overlapping features: CRF+ > MEMM+ >> HMM

© Eric Xing @ CMU, 2005-2015 75



Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

76

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the MAP inference problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

77

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

78

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



2. CASE STUDY: IMAGE 
SEGMENTATION (COMPUTER VISION)

General CRFs, Hidden-state CRFs
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Other CRFs
l So far we have discussed only 1-

dimensional chain CRFs

l Inference and learning: exact

l We could also have CRFs for 

arbitrary graph structure

l E.g: Grid CRFs

l Inference and learning no longer tractable

l Approximate techniques used

l MCMC Sampling

l Variational Inference

l Loopy Belief Propagation

l We will discuss these techniques soon
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Applications of CRF in Vision

Image Segmentation

© Eric Xing @ CMU, 2005-2015 81

Stereo Matching Image Restoration



Application: Image Segmentation

© Eric Xing @ CMU, 2005-2015 82



Application: Handwriting Recognition

© Eric Xing @ CMU, 2005-2015 83



Application: Pose Estimation

84

Penalizes unrealistic 
poses

Local classifier for 
each part

Cascaded Models for Articulated Pose Estimation, B. Sapp, A. Toshev, B. Taskar



Feature Functions for CRF in Vision
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Case Study: Image Segmentation
l Image segmentation (FG/BG) by modeling of interactions btw RVs 

l Images are noisy. 

l Objects occupy continuous regions in an image.

© Eric Xing @ CMU, 2005-2015 87

Input image Pixel-wise separate

optimal labeling
Locally-consistent 

joint optimal labeling

[Nowozin,Lampert 2012]

Y*= argmax
y∈{0,1}n

Vi (yi,X)+ Vi, j (yi, yj )
j∈Ni

∑
i∈S
∑

i∈S
∑
#

$
%
%

&

'
(
(
.

Y: labels

X: data (features)

S: pixels

Ni: neighbors of pixel i

Unary Term Pairwise Term



Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

89

Assuming we divide 
into foreground / 
background, each 

factor is a table with 22

entries.



Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

95

This new factor has 25

entries



Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?
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For an MxM grid the 
new factor has 2M

entries

…

… ……………



Grid CRF
• Suppose we want to image segmentation using a grid model
• What happens when we run variable elimination?

97

For an MxM grid the 
new factor has 2M

entries

…

… ……………

In general, for high 
treewidth graphs like 

this, we turn to 
approximate inference

(which we’ll cover soon!)



Case Study: Object Recognition

Data consists of images x and labels y.

98

pigeon

leopard llama

rhinoceros



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.

100

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time
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1
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X7
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Z 6
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Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time
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X 5

Z 5
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Hidden-state CRFs
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Joint model:

Marginalized model:

leopard

ψ2 ψ4

X
1

Z
1

ψ
1

X2

Z2

ψ3

X3

Z3

ψ5
X 4

Z 4

ψ 7
X 5

Z 5

ψ 9
X7

Z7

ψ1

X 6

Z 6
ψ 1

ψ4

ψ4

Y

p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

D = {x(n),y(n)}Nn=1Data:



Hidden-state CRFs
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Joint model:

Marginalized model: p✓(y | x) =
X

z

p✓(y, z | x)

p✓(y, z | x) = 1

Z(x,✓)

Y

↵

 ↵(y↵, z↵,x)

We can train using gradient based methods:
(the values x are omitted below for clarity)

d`(✓|D)

d✓
=

NX

n=1

⇣
Ez⇠p✓(·|y(n))[fj(y

(n), z)]� Ey,z⇠p✓(·,·)[fj(y, z)]
⌘

=
NX

n=1

X

↵

 
X

z↵

p✓(z↵ | y(n))f↵,j(y
(n)
↵ , z↵)�

X

y↵,z↵

p✓(y↵, z↵)f↵,j(y↵, z↵)

!

Inference on 
full
factor graph

Inference on 
clamped
factor graph

D = {x(n),y(n)}Nn=1Data:



Learning and Inference Summary
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Learning Marginal 
Inference

MAP Inference

HMM Just counting Forward-
backward

Viterbi

MEMM Gradient based –
decomposes and doesn’t 
require inference (GLIM)

Forward-
backward

Viterbi

Linear-chain 
CRF

Gradient based – doesn’t 
decompose because of Z(x)
and requires marginal 
inference

Forward-
backward

Viterbi

General CRF Gradient based – doesn’t 
decompose because of Z(x)
and requires (approximate) 
marginal inference

(approximate 
methods)

(approximate 
methods)

HCRF Gradient based – same as 
General CRF

(approximate 
methods)

(approximate 
methods)



Summary

• HMM: 

– Pro: Easy to train

– Con: Misses out on rich features of the observations

• MEMM: 

– Pro: Fast to train and supports rich features

– Con: Suffers (like the HMM) from the label bias problem

• Linear-chain CRF: 

– Pro: Defeats the label bias problem with support for rich features

– Con: Slower to train

• MBR Decoding: 

– the principled way to account for a loss function when decoding from a probabilistic model

• Generative vs. Discriminative: 

– gen. is better if the model is well-specified

– disc. is better if the model is misspecified

• General CRFs:

– Exact inference won’t suffice for high treewidth graphs

– More general topologies can capture intuitions about variable dependencies

• HCRF:

– Training looks very much like CRF training

– Incorporation of hidden variables can model domain specific knowledge

105


