
10-708: Probabilistic Graphical Models 10-708, Spring 2018

Lecture 14: Loopy Belief Propagation

Lecturer: Kayhan Batmanghelich Scribes: Kyle Xiong, Chaitanya Malaviya

1 Inference Problems

Probabilistic inference tasks include computing the marginal likelihood of the data given a model, the
marginal probability of a subset of variables, conditional posterior probabilities for disjoint subsets, or max-
imal assignment. We have learned exact inference methods to compute these tasks such as brute force
marginalization, variable elimination, and message passing algorithms. Brute force algorithms require us to
marginalize over all possible states of all variables in the distribution. This can be computational intractable
even for a small number of variables. By contrast, variable elimination and message passing can be far more
computationally efficient. A simple idea of message passing is illustrated in our soldier example in which
they each pass and receive messages to each other to count the total number of soldiers in the graph.

Figure 1: Example of message passing in an undirected graphical model using sum-product belief propaga-
tion. Factor ψ1 receives a message from X3 and passes it to X1.

We have previously learned about sum-product belief propagation which operates on factor graphs to pass
messages from nodes to factors and from factors to nodes. Illustrated in Figure 1 and by applying equation
1, a factor node receives messages from the neighboring node (X3), applies its belief ψ1 on the message, and
propagates its resulting message to the target node X1.

µα→i(xi) =
∑

xα:xα[i]=xi

ψα(xα)
∏

j∈N (α)\i

µj→α(xα[i]) (1)

1

2 Lecture 14: Loopy Belief Propagation

2 Junction Trees Revisited

Problems arise when a graph is not a tree and has some loops. When a graph has loops but the distribution
does not have that many random variables, junction trees can be used to create a new singly connected
graph. Given a graphical model, we can construct a junction tree by moralizing the graph, making a chordal
graph, and then constructing the clique tree. However, while we can do exact inference, junction trees scale
computationally with the size of the maximal cliques.

Figure 2: Message passing example in a clique tree model. Clique C receives a message from B. S is the
separator between the two cliques.

Message passing on clique trees is described in Equations 2 and 3 where φS , φB , and φC are the potentials
of the separator, clique B, and clique C respectively.

φ̃S(xS)←
∑
xB\S

φB(xB) (2)

φC(xC)← φ̃S(xS)

φS(xS)
φC(xC) (3)

Sometimes graphs can be both loopy and have a lot of random variables. In Figure 3, when factors are
eliminated in the factor graph, new ones must also be introduced. For an M ×M grid, the new factor would
have 2M entries. In such cases we cannot apply exact inference algorithms that only deal with small numbers
of random variables. Therefore, we have to resort to approximate inferences.

Figure 3: Factor graph variable elimination example. On the left is the original factor graph. On the right,
the factor graph has had a portion of its factors eliminated.

Lecture 14: Loopy Belief Propagation 3

3 Recap of Belief Propagation

3.1 Belief Propagation Without Factors

The message passed from a node k to node i in Figure 4 is computed using Equation 4. The sum terms
before the product comprise the interaction term. Specifically, ψij(xi, xj) is the binary term which involves
interactions between nodes i and j. ψi(xi) is the unary term which is the contribution of node i. When
sending a message from i to j, i first receives messages from its neighbor nodes k (excluding node j). This
is called the external evidence and is represented by the product

∏
kMk→i(xi) after the interaction term.

This term summarizes the evidence from the rest of the random variables.

Mk→i ∝
∑
xi

ψij(xi, xj)ψi(xi)
∏
k

Mk→i(xi) (4)

Figure 4: Message passing and receiving example.

After sending messages, they must also be passed back to form a belief according to Equation 5.

bi(xi) ∝ ψ(xi)
∏
k

Mk→i(xi) (5)

3.2 Belief Propagation in Factor Graphs

In factor graphs, there are two kinds of messages - those that are passed from nodes to factors and those
from factors to nodes. For nodes, messages and beliefs are expressed in Equations 6 and 7. In Equation 6, i
is the node and a is the factor the message is passed to. In Equation 7, the belief of node i is the product
of all messages from its neighbors N(i).

mi→a(xi) =
∏

c∈N(i)\a

mc→i(xi) (6)

b(xi) ∝
∏

a∈N(i)

ma→i(xi) (7)

For factors, messages and beliefs are expressed in Equations 8 and 9. In Equation 8, the message from the
factor a sums over all random variables except for xi. fa is the factor associated with factor a. For both

4 Lecture 14: Loopy Belief Propagation

nodes and factors, the normalized beliefs are the marginal probabilities of the random variable.

ma→i(xi) =
∑
Xa\xi

fa(Xa)
∏

j∈N(a)\i

mj→a(xj) (8)

ba(Xa) ∝ fa(Xa)
∏

i∈N(a)

mi→a(xi) (9)

In a factor graph with no cycles, it’s feasible to pick any node to serve as the root, begin sending messages
from the leaves to the root, and passing messages back to the leaves from the root. However, if there are
cycles then a tree cannot be constructed from the graph.

In a loopy graph, we can start with random initialization of messages and beliefs. While the graph is not
converged, we can continually update the beliefs and messages using the equations we have already defined.
Termination conditions include: stopping after a fixed number of iterations, stopping when we observe no
significant change in beliefs, or if the solution is not oscillatory. In the worst case scenario, the graph may
not converge or may converge to a wrong solution, but in practice it converges most of the time.

To measure how close the approximation is to the actual distribution P where P = 1
Z

∏
fa∈F fa(Xa), we

should find a distribution Q that minimizes the KL-divergence (Equation 10) between P and Q.

KL(P ||Q) =
∑
X

P (X) log

(
P (X)

Q(X)

)
(10)

KL-divergence is non-negative, but it is also not symmetric and does not measure distance. A new distance
metric D(Q1, Q2) = KL(Q1||Q2)+KL(Q2||Q1) is a symmetric variant of KL-divergence, but does not satisfy
the triangular property (D(Q1, Q2) ≤ D(Q1, Q3) +D(Q2, Q3)). It is not a real distance, but it’s still useful.
We use KL-divergence instead of real distance because the form of KL-divergence makes calculations easier.

4 Loopy Belief Propagation

4.1 Approximate Parameter Estimation

Belief Propagation can also be viewed as solving an optimization problem for a cost function called the Bethe
free energy over possible marginal distributions. We will discuss the proof for this below.

Given a undirected graphical model, we assume a Gibbs distribution on a set of variables X in the graph,
P (X) = 1

Z

∏
fa∈F fa(Xa). We aim to find a distribution Q that is a close approximation to P . We can then

attempt to minimize the KL-divergence between P and Q. We use the KL-divergence as the distance metric
since it is equivalent to minimizing an expectation of the real distribution and the negative entropy.

KL(Q||P) =
∑
X

Q(X) log
Q(X)

P (X)

=
∑
X

Q(X) logQ(X)−
∑
X

Q(X) logP (X)

= −HQ(X)− IEQ[logP (X)]

Lecture 14: Loopy Belief Propagation 5

The above form allows us to estimate logP (X) without performing inference on P by sampling from Q(X).

KL(Q||P) = −HQ(X)− IEQ[log
1

Z

∏
fa∈F

fa(Xa)]

= −HQ(X)−
∑
fa∈F

IEQ log fa(xa) + logZ

We refer to the sum of the first two terms in the above equation as the free energy F (P,Q), where F (P,Q) >=
F (P, P).

F (P,Q) = −HQ(X)−
∑
fa∈F

IEQ[log fa(xa)]

We aim to find a family of distributions Q that allows us to compute F (P,Q) easily and is easy to sample
from.

Q∗ = argmin
Q∈Q

F (P,Q)

4.2 Bethe Approximation

So far, we have modified the original inference problem on P (Q) to an optimization problem. Let us work
out how to calculate the free energy F (P,Q) for a general tree, given in Figure 5.

Figure 5: A general tree in the form of a chain

We can write the joint distribution of the graph in Figure 5 as a product of marginals over pairs of variables
divided by the marginals over shared variables.

P (X1...X8) =
1

Z
φ43(X4, X3)φ32(X3, X2)φ21(X2, X1)..φ87(X8, X7)

=
P (X3, X4)P (X2, X3)P (X2, X1)...P (X8, X7)

P (X3)P (X2)P (X1)...P (X8)

The entropy term in the free energy can be written as,

H(X1, ...X8) = −
∑

a∈num
IE[log p(Xa)] +

∑
i∈den

IE[log p(xi)] (11)

F (X1, ...X8) = −
∑

a∈num
IE

[
log

p(Xa)

f(Xa)

]
+
∑
i∈den

IE

[
log

p(xi)

f(Xi)

]
(12)

For a general tree, the joint probability is given by,

b(X) =
∏
a

ba(xa)
∏
i

bi(xi)
1−di (13)

6 Lecture 14: Loopy Belief Propagation

Here, di is the degree of node xi. The Bethe Free Entropy HBethe and Bethe Free Energy FBethe for a general
tree can be written as,

HBethe =
∑
a

∑
xa

ba(xa) ln ba(xa) +
∑
i

(di − 1)
∑
xi

bi(xi) ln bi(xi) (14)

FBethe =
∑
a

∑
xa

ba(xa) ln
ba(xa)

fa(xa)
+
∑
i

(1− di)
∑
xi

bi(xi) ln bi(xi) (15)

Figure 6: A loopy graph.

Lets extend this to the case of a general graph. In a general graph, we cannot compute the free energy

FBethe exactly since there may be loops in the graph. If we choose the free energy ˆF (P,Q) to be minimized
as FBethe by pretending that our graph is a tree, we arrive at the Bethe approximation. For instance, the
free energy FBethe for the loopy graph in Figure 6 can be written as,

FBethe = F12 + F23 + ..+ F67 + F78 − F1 − F5 − 2F2 − 2F6...− F8 (16)

This approximation is easy to compute as the entropy term only involves a sum over pairwise and shared

variables, as opposed to a sum over possible values. However, we must note that ˆF (P,Q) = FBethe may not
be well connected to the actual F (P,Q).

4.3 Constrained Minimization

Figure 7: A factor graph.

Consider a factor graph with discrete random variables as shown in Figure 7. If xa and xi correspond to the
factors and variables in this graph respectively, the Bethe Free Energy for this graph can be written as,

FBethe =
∑
a

∑
xa

ba(xa) ln
ba(xa)

fa(xa)
+
∑
i

(1− di)
∑
xi

bi(xi) ln bi(xi) (17)

We would now like to minimize FBethe with respect to ba(xa) and bi(xi), subject to certain constraints.

min
ba(xa),bi(xi)

FBethe, subject to (18)

Lecture 14: Loopy Belief Propagation 7

1.
∑
xi
bi(xi) = 1 and

∑
xa
bi(xa) = 1

2. bi(xi) ≥ 0 and ba(xa) ≥ 0

3.
∑
xi\xj bi(xi) = bj(xj) and

∑
xa\xj ba(xa) = bj(xj)

We can solve the above constrained optimization problem by formulating it as a Lagrangian.

L = FBethe +
∑
i

γi

{∑
xi

bi(xi)− 1

}
+
∑
a

∑
i∈N(a)

∑
xi

λai(xi)

 ∑
Xa\xi

ba(Xa)− bi(xi)

 (19)

Setting the derivatives of L with respect to the factors and variables to 0,

bi(xi) ∝ exp

 1

di − 1

∑
a∈N(i)

λai(x(i))

ba(xa) ∝ exp

− log fa(Xa) +
∑

i∈N(a)

λai(x(i))

If we substitute the Lagrangian parameter λai(xi) = log(mi→a(xi)), where mi→a(xi) is the message from
variable xi to factor xa, we obtain the original belief propagation equations.

bi(xi) ∝ fi(xi)
∏

a∈N(i)

ma→i(xi)

ba(xa) ∝ fa(Xa)
∏

i∈N(a)

∏
c∈N(a)\a

mc→i(xi)

This suggests that loopy belief propagation is in fact minimizing the Bethe Free Energy of the general graph.

To recap, we formulated the original inference problem on P as an optimization problem by introducing
another distribution Q and minimizing the distance between these two distributions. For a complex graph,
we know that computing marginal probabilities over arbitrary sets of random variables in Q is intractable.
Using the Bethe energy function, which is formulated only in terms of unary and pairwise marginals (Eq 17),
we can make Q tractable. In other words, the Bethe approximation allows us to reduce from exponential
to polynomial constraints in the optimization problem. The above procedure is a variational method that
allows us to make Q tractable by relaxing constraints on the original problem.

Graphical Intuition: For a set of discrete random variables, the space of probability distributions is a
set of linear equations which all intersect with each other, forming a feasible set in the form of a polyhedron.
Optimizing the Bethe Free Energy gives us a relaxed feasible set us that is the exterior of this original feasible
set and is easier to optimize.

