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1 Inferential Problems

Can be categorized into three aspects:

• Marginalisation : p(y) =
∫
p(y, θ)dθ

• Expectation : E[f(y)|x] =
∫
f(y)p(y|x)dy

• Prediction : p(yt+1) =
∫
p(yt+1|yt)p(yt)dyt

We can use Variational Methods to approximate a complicated of-interest-density. In other words, the
Variational Principle is to use a general family of methods to approximate complicated densities by a
simpler class of densities.

2 Variational Calculus

Two types of derivations:

• Variables as input, output is a value. E.g., df
dx

• Functions as input, output is a value. E.g., δF
δf → maxH[p(x)] w.r.t. p(x)

Two basics on functional calculus:

• Functional derivative: δf(x)
δf(x′) = δ(x− x′)

• Commutative rule: δ
δf(x′)

∂f(x)
∂x = ∂

∂x
δf(x)
δf(x′)

E.g., δH[p(x)]
δp(x) = −1− log p(x). (See lecture slides for details or do it your self.)

3 Variational Methods

Note that, the notations used in the slides are inconsistent from slides to slides, and it results in lots of
confusion, so I try to unify them.

Goal: Approximate a difficult distribution p(z|D) with a new distribution q(z)
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• p(z|D) and q(z) should be close

• Computation on q(z) should be easy

Use Kullback-Leibler divergence (KL-divergence) to measure probability discrepancy between p and q, the
loss function J(q) (for unnormalized distribution) becomes

∑
z

q(z)log
q(z)

p̃(z)

=
∑
z

q(z)log
q(z)

Z · p(z)
(Z is the normalizer)

=
∑
z

q(z)log
q(z)

p(z)
− logZ

=KL(q||p)− logZ

Since Z is constant, by minimizing J(q), we force q to become close to p.

Therefore, if we want to minimize KL(q||p), we can actually maximize −
∑
z q(z)log q(z)

p̃(z) ≤ logZ, which is

also called evidential lower bound (ELBO). In other words, logZ −KL(q||p) =ELBO(q).

Alternative Interpretations:

• View 1: Minimize expected energy while maximizing entropy

J(p) = Eq[log q(z)] + Eq[−log p̃(z)] = −H(z) + Eq[E(z)]

It is also called variational free energy or Helmholtz free energy

• View 2: Expected Evidence plus a penalty term that measures how far apart the two distributions are

J(p) = KL(q||p)− logZ = KL(q||p)− log p(D)

4 Forward or Reverse KL

• Information Projection:

KL(q||p) =
∑
z

q(z)log
q(z)

p(z)

– We must ensure that if p(x) = 0 then q(x) = 0. (Infinite if p(x) = 0 and q(x) > 0)

– Zero Forcing: q will under-estimate the support of p.

• Moment Projection:

KL(p||q) =
∑
z

p(z)log
p(z)

q(z)

– Infinite if q(x) = 0 and p(x) > 0.

– Zero Avoiding: q will over-estimate the support of p.
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5 Interpreting Variational Lower Bound using Jensen Inequality

log p(x) = log

∫
p(x|z)p(z)q(z|x)

q(z|x)
dz

≥
∫
q(z|x)log p(x|z) p(z)

q(z|x)
dz

= Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z))
(

Variational Lower Bound
)

= F(x, q)

• x: data

• q(z|x) is the approximate posterior for matching the true posterior p(z|x)

• Eq(z|x)[log p(x|z)] : Reconstruction

• KL(q(z|x)||p(z)) : Penalty Term

• Parameters for q(z|x) is called variational parameters

Integration is now optimisation:

• Free form:

δF(x, q)

δq(z|x)
= 0 s.t.

∫
q(z|x)dz = 1

→ q(z|x) ∝ p(z)exp (log p(x|z, θ))

– The optimal solution is the true posterior distribution.

– But solving for the normalization is our original problem.

• Fixed form:
qφ(z|x) = f(z, x;φ)

– This is ideally a rich class of distributions.

– φ: variational parameters

6 Naive Mean Field Approach

Assume the posterior is fully factorizable

q(z|x;φ) =
∏
i

qi(zi|x;φi)

Goal:
min
q1···qD

KL(q||p)

Instead, maximizing its variational lower bound:

L(q) = −J(q) =
∑
z

q(z|x)log
p̃(z)

q(z|x)
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7 Mean Field Updates

Let’s focus on qj (holding all the others constant)

L(qj) =
∑
z

∏
i

qi(z|x)
[
log p̃(z)−

∑
k

log qk(zk|x)
]

=
∑
zj

∑
z−j

qj(zj |x)
∏
i 6=j

qi(zi|x)
[
log p̃(z)−

∑
k

log qk(zk|x)
]

=
∑
zj

qj(zj |x)
∑
z−j

∏
i 6=j

qi(zi|x)log p̃(z)−
∑
zj

qj(zj |x)
∑
z−j

∏
i 6=j

qi(zi|x)
[∑
k 6=j

log qk(zk|x) + log qj(zj |x)
]

=
∑
zj

qj(zj |x)log fj(zj , x)−
∑
zj

qj(zj |x)log qj(zj |x) + const.

with log fj(zj , x) =
∑
z−j

∏
i 6=j

qi(zi|x)log p̃(z)

To sum up,

L(qj) = Eqj
[
Eq−j

[
log p̃(z)

]]
+H(qj)

Solving
δL(qj)
δqj

= 0, we get

δL(qj)

δqj
= Eq−j

[
log p̃(z)

]
− log qj − 1 = 0

In short,

q∗j ∝ exp
(
Eq−j

[
log p̃(z)

])

8 Wrapping Up

Advantages:

• Applicable to almost all probabilistic models: non-linear, non-conjugate, high-dimensional, directed
and undirected.

• Can be faster to converge than competing methods.

• Easy convergence assessment.

• Numerically stable.

• Can be used on modern computing architectures (CPUs and GPUs).

• Principled and scalable approach for model selection.

Disadvantages:

• An approximate posterior only - not always guaranteed to find exact posterior.

• Difficulty in optimisation can get stuck in local minima.

• Typically under-estimates the variance of the posterior and can bias maximum likelihood parameter
estimates.
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• Limited theory and guarantees for variational methods.

Mean filed v.s. LBP

• LBP minimizes the Bethe energy while MF maximizes the ELBO.

• LBP is exact for trees whereas MF is not, suggesting LBP will in general.

• LBP optimizes over node and edge marginals, whereas naive MF only optimizes over node marginals,
again suggesting LBP will be more accurate.

• MF objective has many more local optima than the LBP objective, so optimizing the MF objective
seems to be harder.

• MF tends to be more overconfident than BP.

• The advantage of MF is that it gives a lower bound on the partition function while for LBP we don’t
know the relationship.

• MF is easier to extend to other distributions besides discrete and Gaussian.


