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14 : Mean Field Assumption

Lecturer: Kayhan Batmanghelich Scribes: Yao-Hung Hubert Tsai

1 Inferential Problems

Can be categorized into three aspects:

e Marginalisation : p(y) = [p(y,0)do
e Expectation : E[f = [ f(y)p(y|z)dy

e Prediction : p(yt+1) = f P(Yes1lye)p(ye)dy:

We can use Variational Methods to approximate a complicated of-interest-density. In other words, the
Variational Principle is to use a general family of methods to approximate complicated densities by a
simpler class of densities.

2 Variational Calculus

Two types of derivations:

e Variables as input, output is a value. E.g., %

e Functions as input, output is a value. E.g., 6f — mazH[p(x)] w.r.t. p(x)

Two basics on functional calculus:

e Functional derivative: % =0(x — ')

e Commutative rule: 5f?1'/) 625:’) = %;}{((;,))

E.g., 61;1[);5;?)] = —1 —logp(z). (See lecture slides for details or do it your self.)

3 Variational Methods

Note that, the notations used in the slides are inconsistent from slides to slides, and it results in lots of
confusion, so I try to unify them.

Goal: Approximate a difficult distribution p(z|D) with a new distribution ¢(z)
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p(z|D) and ¢(z) should be close

e Computation on ¢(z) should be easy

Use Kullback-Leibler divergence (KL-divergence) to measure probability discrepancy between p and ¢, the
loss function J(q) (for unnormalized distribution) becomes

= Z z)log q(z( )(Z is the normalizer)

= Z log — —logZ
=’C£(qllp) - logZ

Since Z is constant, by minimizing J(q), we force ¢ to become close to p.

Therefore, if we want to minimize KL(q||p), we can actually maximize — ) q(z )log q(z) < log Z, which is
also called evidential lower bound (ELBO). In other words, log Z — KCL(q||p) :ELBO( )

Alternative Interpretations:

e View 1: Minimize expected energy while maximizing entropy
J(p) = Eqllog q(2)] + Eq[—log p(2)] = —H(2) + Eq[E(2)]
It is also called variational free energy or Helmholtz free energy

e View 2: Expected Evidence plus a penalty term that measures how far apart the two distributions are

J(p) = KL(q||p) — log Z = KL(q||p) — log p(D)

4 Forward or Reverse KL

e Information Projection:

KLially) = S a()ios 25

— We must ensure that if p(x) = 0 then ¢(z) = 0. (Infinite if p(x) = 0 and ¢(x) > 0)

z

— Zero Forcing: q will under-estimate the support of p.

e Moment Projection:

KL(pllg) = Zp

— Infinite if ¢(z) = 0 and p(x) > 0.

— Zero Avoiding: q will over-estimate the support of p.
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5 Interpreting Variational Lower Bound using Jensen Inequality

log p(z) = log / palap()?

> [ atclo)iogpal2 Plz) .

= Ey(z1n) log p(z]2)] — KL(q(z|2)||p(2)) ( Variational Lower Bound)
= F(z,9)

z: data

q(z|z) is the approximate posterior for matching the true posterior p(z|x)

Eq(z12)[log p(z]2)] : Reconstruction

KL(q(z|x)||p(z)) : Penalty Term

Parameters for g(z|x) is called variational parameters
Integration is now optimisation:

e Free form:

0F (@) _ la)ds —
e =0 s.t. /q( |x)d 1
— q(z|z) x p(z)exp (log p(z|z, 0))

— The optimal solution is the true posterior distribution.

— But solving for the normalization is our original problem.

e Fixed form:

46 (2|z) = f(2,2;9)
— This is ideally a rich class of distributions.

— ¢: variational parameters

6 Naive Mean Field Approach

Assume the posterior is fully factorizable
q(zla; ¢) = [ [ ai(zilw; 60)

Goal:
min KL(q|lp)

a1ap

Instead, maximizing its variational lower bound:

p(2)

q(z|z)

L(g) = —J(g) = Y _ q(z|z)log

z
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7 Mean Field Updates

Let’s focus on ¢; (holding all the others constant)

Zqu z|z) [logp Zloqu zk\x}
=3 a4zl [Jaizile) [logp ZIquk zklx]

Zj F—j i#]
—Z% zjlz) ZHQ% zi|x)log p(z ZQJ (zj]@) ZH% zi|x) [Zlong zi|z) + log ¢;(2j|x)
Z—j 1#] Z—j i#] k#j
= Zq] zjlx)log fi (2, x) — qu zj|a:)logqj(zj\$) + const.

with logfj 25, T Zqu ZZ|:,E )og p(z)

z—j i#]

To sum up,

L{gs) = By, [y, [log 5(2)] ] + H(a))
Solving % =0, we get

0L(q; -
5(%) =E, ,[logp(z)] —logg; —1=0
4j

In short,

q;-k X exp (Eq_j [logﬁ(z)])

8 Wrapping Up
Advantages:
e Applicable to almost all probabilistic models: non-linear, non-conjugate, high-dimensional, directed
and undirected.
e Can be faster to converge than competing methods.
e Easy convergence assessment.
o Numerically stable.
e Can be used on modern computing architectures (CPUs and GPUs).

e Principled and scalable approach for model selection.
Disadvantages:

e An approximate posterior only - not always guaranteed to find exact posterior.
e Difficulty in optimisation can get stuck in local minima.

e Typically under-estimates the variance of the posterior and can bias maximum likelihood parameter
estimates.
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e Limited theory and guarantees for variational methods.
Mean filed v.s. LBP

e LBP minimizes the Bethe energy while MF maximizes the ELBO.
e LBP is exact for trees whereas MF is not, suggesting LBP will in general.

e LBP optimizes over node and edge marginals, whereas naive MF only optimizes over node marginals,
again suggesting LBP will be more accurate.

e MF objective has many more local optima than the LBP objective, so optimizing the MF objective
seems to be harder.

e MF tends to be more overconfident than BP.

e The advantage of MF is that it gives a lower bound on the partition function while for LBP we don’t
know the relationship.

e MF is easier to extend to other distributions besides discrete and Gaussian.



