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Empowering Variational Inference with Predictive Features:
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Abstract

Generative models, such as the probabilistic topic model, have been widely deployed for
various applications in the healthcare domain, such as learning disease or tissue subtypes.
However, learning the parameters of such models is usually an ill-posed problem and may
lose valuable information about disease severity. A common approach is to add a discrim-
inative loss to the generative model’s learning loss; finding a balance between two losses
is not straightforward. We propose an alternative way in this paper. We use distribution
embedding to construct patient-level representation, which is usually more discriminative
than the posterior parameters. We view the patient-level representation as an external
covariate. Then, we use the external covariates to inform the posterior of our generative
model. Effectively, we enforce the generative model’s approximate posterior to reside in
the subspace of the discriminative covariates. We illustrate this method’s application on
a large-scale lung CT study of Chronic Obstructive Pulmonary Disease (COPD), a highly
heterogeneous disease. We aim at identifying tissue subtypes by using a variant of a topic
model as a generative model. We evaluate the patient representation, the resulting topics
on the patient- and population-level. We also show that some of the discovered subtypes are
correlated with genetic measurements, suggesting that the identified subtypes characterize
the disease’s underlying etiology.

1. Introduction

Probabilistic models have been widely used to uncover hidden phenotypes for various health-
care applications, such as inferring rates of aging (Pierson et al., 2019), survival predic-
tion (Chen and Weiss, 2017), disease subtyping (Batmanghelich et al., 2015), and many
more (Chen et al., 2020). One of the challenges of applying the generative models in med-
ical applications is to ensure that the inferred parameters reflect the disease status; for
example, the proportion of abnormal tissue subtype in each patient should be correlated
with the clinical measurements reflecting the disease severity. We develop a model that
allows for incorporating external covariates into the posterior inference. The external co-
variates can be flexibility designed such that they are correlated with the disease severity.
For instance, these covariates can be features extracted from a neural network predicting
clinical measurements.

We apply our approach in the context of Chronic Obstructive Pulmonary Disease
(COPD), which is a highly heterogeneous disease (Castaldi et al., 2017b; Chen et al., 2013).
COPD is characterized by inflammation of the airway and destruction of the air sacs (em-
physema) (Viegi et al., 2007), and is one of the leading causes of death worldwide (Decramer
et al., 2012; World Health Organization, 2018). There are differences between risk factors of
different COPD subtypes (Shapiro, 2000), and hence understanding subtypes is important.
Respirometry measurement is used for the diagnosis of COPD; however, it cannot identify
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the underlying process of COPD. Hence, computed tomography (CT) imaging, which allows
direct qualitative and quantitative evaluation of tissue destruction, is routinely requested
for COPD patients. For example, phenotypic abnormality of emphysema is evident from
CT images (Park et al., 2008; Ross et al., 2016). Although there has been significant work
on defining visual subtypes of emphysema (Song et al., 2017; Ross et al., 2016; Yang et al.,
2017; Häme et al., 2015; Uppaluri et al., 1997; Sorensen et al., 2010; Depeursinge et al.,
2007; Prasad et al., 2009) from CT images, there is significant intra-reader and inter-reader
variability of visual subtypes (Binder et al., 2016; Aziz et al., 2004). In this paper, we adopt
a variant of topic model to formulate the subtype discovery problem.

We view CT image of every patient as a mixture of K typical imaging patterns that
reoccur across the population. The proportion of the mixture is patient specific, but the
patterns are shared across the population. We call the typical pattern “tissue subtype.”
Such a specific way of explaining data is reminiscent of topic models where the topics are
tissue subtypes. Hence, we use “subtype” and “topic” interchangeably. The distribution
of each patient’s tissue subtype can be viewed as patient representation. The off-the-shelf
topic modeling is unsupervised, and it focuses on explaining the data and can easily miss
the disease-relevant information. We aim to address this issue in this paper. We enforce
the patient representation to be correlated with disease severity, hence indirectly encourage
subtypes to be disease-related. Instead of supervised topic modeling, we propose to inject
discriminative information in the form of covariates to the subtypes’ inference model (i.e.,
topics).

Related Works. Various unsupervised subtype discovery methods have been pro-
posed. Image-based phenotype discovery in CT images via spatial texture patterns have
been explored in emphysema (Yang et al., 2017; Häme et al., 2015). Ross et al. (2016)
propose a generative graphical model that incorporates patient trajectories to identify dis-
ease subtypes for COPD. Binder et al. (2016) present a generative model for unsupervised
discovery of visual subtypes for COPD along with inferring population structure. Their
method identifies sub-populations and clusters of image pattern simultaneously. One of
the underlying assumptions of these methods is that the patient population can be divided
into sub-populations, which is disputed for COPD (Castaldi et al., 2017a). Furthermore,
these methods are unsupervised – solving a highly ill-posed problem – hence, the resulting
subtypes may not reflect disease severity.

On the other hand, many supervised methods have been proposed to characterize the
severity of lung diseases from CT images (Uppaluri et al., 1997; Depeursinge et al., 2007;
Park et al., 2008; Prasad et al., 2009; Sorensen et al., 2010; Walsh et al., 2018). These
methods study local descriptors such as local binary pattern (LBP) (Sorensen et al., 2010),
wavelet and gray-level features (Depeursinge et al., 2007) as well as various predictive meth-
ods ranging from k−nearest neighbor classifier (Sorensen et al., 2010) to Support Vector
Machine (SVM) (Park et al., 2008). However, it is not clear how these methods can inform
subtype discovery.

Our model is closely related to supervised topic models (Mcauliffe and Blei, 2008; Ko-
rshunova et al., 2019; Ren et al., 2019; Lacoste-Julien et al., 2009; Ramage et al., 2009;
Hughes et al., 2018) which generally add a discrminative loss term and predict the labels
from the topics or topic proportions. In healthcare applications other than COPD, Yang
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et al. (Yang et al., 2019) proposed a supervised topic modeling to characterize Alzheimer’s
disease subtypes.

Our proposed approach is different from the previous works in three ways:

1. Rather than modeling the disease cohort into sub-populations, we view it as a contin-
uum where the continuum represents the proportion of subtypes. We aim at discov-
ering subtypes across the disease cohort; each patient is a mixture of these subtypes
which we assume are manifested in the CT images. The image signature of the sub-
types and the patient-specific mixture are modeled as latent variables in a probabilistic
generative model and, more specifically, a topic model (Blei et al., 2003).

2. We assume that discriminative covariates are provided as extra information. We con-
struct such covariates based on a generic approach and without making any parametric
assumption over the model or probability distribution.

3. Unlike supervised topic modeling, our model does not require balancing the generative
and discriminative losses; hence, it has fewer hyper-parameters. We propose to inject
the covariates into the approximate posterior distribution.

We apply our method on a large scale COPD study showing good predictive performance
and clinically interpretable subtypes. Three of the subtypes are shown to have significant
genetic heritability. Furthermore, we compare our model with variants of topics models and
demonstrate that it outperforms them in terms of predictive performance.

Generalizable Insights about Machine Learning in the Context of Healthcare

This paper makes the following contributions which are generalizable to other applications
in healthcare:

• We develop a framework for generative disease subtyping that allows for incorporating
external covariates into the posterior distribution approximation. We propose an
efficient formulation for the posterior approximation that does not incur the extra
computational cost during inference and does not require a hyper-parameter to balance
supervised and unsupervised loss terms (as in supervised topic models). Although our
framework demonstrates promising results on topic models, it can be applied to other
probabilistic graphical models that benefit from supervision (e.g., mixture models
(Hannah et al., 2011) or hidden Markov models (Moscovich and Chen, 2004)).

• We apply our framework to disease subtyping based on CT images; however, its
use case is not limited to this data type and can be applied to any data type in
healthcare for which topic model have shown to be useful. Examples include, topic
model application to Electronic Health Records (EHR) (Li et al., 2020), transcriptomic
data (Valle et al., 2020), and histopathology data (Cruz-Roa et al., 2011).

• Although we use covariates that are predictive of disease severity, our framework
is capable of incorporating other types of relevant side information such as clinical,
genetic, and demographic covariates.
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Figure 1: The schematic of our framework for two subjects s and s′ with ts and ts′ as their corre-
sponding covariates. The encoder (q(·|x)) and decoder (p(x|·)) inside the green box explain data at
the supervoxel-level (word-level) while the gw explains the subject-level data (i.e., topic proportion).
The θk and λk are the parameter of the likelihood function and its corresponding variational param-
eter. The dashed line denotes sharing the parameters. See Table 1 for the definitions of notations
used in this paper.

2. Method

To represent each subject, we adopt the Bag of Words (BOW) model (Fei-Fei and Perona,
2005) and represent a subject s with a set, Xs, containing features extracted from Ns regions
covering the lung regions of the subject. This modeling choice allows us to accommodate
lungs of different sizes; the number of elements in Xs can vary depending on the size of
the lungs. The BOW model assumes that features of every subject, xsn ∈ Xs, are drawn
from subject-specific probability distributions, i.e., xsn ∼ ps. We assume that ps belongs to
some abstract space of distributions (i.e., ps ∈ P). Our model can be viewed as an encoder-
decoder, where the decoder formulates the topic model, and the approximate posterior
distribution is formulated by the encoder. Our goal is to approximate the topics’ posterior
distribution and not image reconstruction. Therefore, to explain features of each topic, we
use a parametric model with limited complexity whose expectations, entropy and marginal
can be computed efficiently.

In Sections 2.1 and 2.2, we explain our design for the decoder as well as the encoder
allowing arbitrary covariate information to be incorporated into inference. The schematic
of the framework is given in Fig. 1.

2.1. Decoder

We first explain the probabilistic graphical model that defines the decoder (i.e., generative
model). Our model is based on topic modeling, where the topic parameters correspond to
the population-level parameters, and document-specific topic proportions correspond to the
subject-level distribution of subtypes. In the following, we discuss the modeling assumptions
in detail.

Population-Level Model The model assumes that there are K tissue types, topics, that
are shared across subjects in the population. We use a D-dimensional Gaussian distribution
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Decoder
S Total number of subjects.
K Total number of subtypes.
Ns Number of supervoxels in subject s.
xs,n Image descriptor of supervoxel n in subject s.
Xs Set of all image features for subject s, (xs,n ∈ Xs).
zs,n Subject-specific subtype that generates super-voxel n in subject s.
πs Proportions of subtypes in subject s.
θk Parameters of the likelihood (e.g., mean µk and Σk

covariance matrix) of image descriptors for population-level
subtype k.

β Stick-breaking proportions for the Dirichlet Process which defines πs.
α Concentration parameters of the stick-breaking distribution

for β.
Encoder
ϕs,n Parameters of the variational posterior for zs,n
ωs Parameters of the variational posterior for πs.
λk Parameters of the variational posterior for θk.
β∗ Parameters encoding the posterior distribution of β.
ts Subject-level feature vector.
W Parameters encoding the posterior topic proportions πs.

hSB(·) Stick-breaking function.
ψs Unnormalized subject-level topic proportions.

Table 1: Summary of the notation used for the decoder (i.e., generative model) and encoder (i.e., variational
Bayes posterior approximation) in our proposed framework.

with mean vector µk ∈ RD and covariance matrix Σk ∈ RD × RD to model the features of
the topic k. For computational reasons, we also assume a conjugate prior for µk and Σk,

θk := (µk,Σk) ∼ NIW(η),

where NIW(η) is the Normal-Inverse-Wishart distribution with hyper-parameter η. Note
that µk,Σk are random variables not parameters; hence, we aim at estimating a posterior
distribution not a point estimate. For notational brevity, let θk = (µk,Σk).

Subject-Level Model For subject s, πs = [πs1, · · · , πsK ] and {zsn}Ns
n=1 are latent random

variables denoting the proportion of topics and the allocation of the supervoxels to the topics
(i.e., zsn ∈ [1 · · ·K]) respectively:

πs|β ∼ Dir(β1, · · · , βK),

zsn|πs ∼ Cat(πs), (1)

xsn|zsn, {θk}Kk=1 ∼ N (µzsn ,Σzsn) ;

where the πs follows the Dirichlet distribution, Cat(πs) represents a categorical distribution
with the topic proportion πs, and zsn = k indicates supervoxel n of subject s follows the
local image descriptor of topic k. The βk’s are concentration parameters. If βk’s are greater
than one, the topics distribution becomes more disperse (less sparse).

To avoid tuning K hyper-parameters for β1 to βK , we follow the truncated Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006), and assume β is generated by the so-called
“stick-breaking” construction,
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τj
i.i.d.∼ Beta(1, α),

βk := τk
∏
j<k

(1− τj), (2)

where Beta(·, ·) indicates the Beta distribution. Such construction allows for controlling
the sparseness of the topics distribution with a single hyper-parameter (i.e., α) rather than
K. Similar to the approach introduced by Bryant and Sudderth (2012), we choose a large
enough K and allow the actual number of topics to be discovered from data.

Overall Decoder Model For notational convenience, we define D = {Xs}Ss=1 to be all
image data, S = {zsn,πs}Ss=1 to be all subject-level latent variables, and C = {θk,β} to be
all population-level latent variables. The joint distribution of all random variables can be
written as follows,

p(D,S, C) = p(β|α)
∏
s

p(πs|β)
∏
s,n

p(xsn|zsn, {θk})p(zsn|πs).

2.2. Encoder

We propose to incorporate external covariates into the estimation of the posterior distribu-
tion. If the covariates are highly correlated with the disease severity, the inferred subtypes
will respect the discriminative signal about the disease severity. Our proposed approach is
general and can incorporate any external covariate depending on the application. We use ts
to denote the covariate features. First, we explain the classical approach, and then explain
our method to incorporate ts.

Variational Bayes (VB) Approximate of the Posterior We seek the true posterior
distribution of the model parameters,

p(S, C|D) =
p(D,S, C)∫

p(D,S, C)dSdC
. (3)

Exact computation of the posterior is computationally intractable since the denominator is
hard to compute. Therefore, Variational Bayes (M. Blei et al., 2016; Jordan et al., 1999)
approximates the posterior by maximizing the Evidence Lower Bound (ELBO) with respect
to q,

max
q∈Q
L(q), L(q) , Eq [ln p(D,S, C)]− Eq [ln q(S, C)] , (4)

where q ∈ Q is an approximate distribution from the family of computationally efficient
probability densities Q. As it is common in mean-field variational inference (Peterson and
Anderson, 1987; Jordan et al., 1999; Hoffman et al., 2013; M. Blei et al., 2016), we assume
the following form for the approximate posterior, q(·),

Q : q(S, C) = q(β;β∗)
∏
s

q(πs;ωs)︸ ︷︷ ︸
subject-level

∏
s,n

q(zsn;ϕsn)︸ ︷︷ ︸
spatial level

∏
k

q(θk;λk)︸ ︷︷ ︸
population-level

, (5)
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where β∗, ϕsn, λk, and ωs are the variational parameters corresponding to the random
variables β, zsn, θk, and πs, respectively.

We use the variational parameters of q(S, C) to approximate the posterior distribution of
the population-level, subject-level, and spatial level variables. Specifically, we approximate
(1) the posterior distribution of θk’s as the image descriptors of each subtype (topic), (2) the
posterior distribution of πs as the proportion of subtypes per subject and (3) the posterior
distribution of zs,. that visualizes the spatial distribution of the subtypes within the lung of
patient s. The exact parametric form for each term is given in Appendix C.

Incorporating the Covariates into Posterior Approximation In the previous sec-
tions, we described the standard topic model construction and the corresponding family
of variational distributions used to approximate the posterior of the latent variables in the
model. The standard inference method for the topic modeling does not allow for incorporat-
ing the external covariates. We define a new family of approximate posterior distributions,
Q′, that allows for the external covariates without incurring an extra computational cost.

Unlike the rest of the variables, πs is defined at the subject-level, characterizing the topics
proportion for subject s. The ts is also a subject-specific covariate. Hence, we introduce
ts to the posterior of the πs. To do that, we use ts, the subject-specific representation,
to encode the subject-level latent variable. In other words, we use ts to parameterize the
variational posterior for πs: q(πs|ts;W ), where W = {Wσ,Wµ} is a new parametrization
of the latent variables πs. Note that previously we had different variational parameters ωs

for each subject, we now have one set of parameters W shared across all subjects.
We model q(πs) implicitly by sampling from a Gaussian distribution and passing the

samples through a function to normalize them to a simplex (i.e.,
∑

k[πs]k = 1). Similar
to the idea of reparameterization trick in Variational Autoencoder (VAE) (Kingma and
Welling, 2013), we parameterize the mean and the variance of the Gaussian by a neural
network. However, instead of inputting the original image, we use the subject-level repre-
sentation, ts, as input:

ε ∼ N (0, IK×K)

ψs = µ(ts;Wµ) + ε� σ(ts;Wσ)

πs = hSB(ψs), (6)

where µ(ts;Wµ) and σ(ts;Wσ) are neural networks computing the mean and variance
vector of ψs, respectively. The hSB(·) is a function transforming the unbounded val-
ues of ψs drawn from a Gaussian distribution to a random variable on a simplex, i.e.,
hSB : RK → ∆K . Many choices are possible for hSB(·), such as the softmax function. How-
ever, computing the probability density of the transformed random variable is not always
straightforward. Here, we choose the following form that enables us to have a closed-form
probability density for πs (Linderman et al., 2015),

hSB(ψs) : πsk = σ(ψsk)(1−
∑
j<k

πsj), (7)

where σ(·) denotes the logistic function. The πs, which is the result of a change of variable,
has the following probability density,

q(πs|ts;W ) = N (ψs;µ,diag(σ2))

∣∣∣∣{ ∂[πs]i
∂[ψs]j

}∣∣∣∣−1 , (8)
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(a) (b)

Figure 2: (a) Odd Rows: Pearson correlation between proportion of subtype and FEV1. The x-
and y-axis are the subtype proportion and FEV1 respectively. Even Rows: Visualization of spatial
average of the learned subtypes across the population shown on a coronal slice of a lung atlas. (b)
Subtypes 1, 2, and 8 depicted on a set of nine patients. Subtypes 1 and 2 are correlated with increase
in severity of COPD (negatively correlated with FEV1), whereas subtype 8 appears to be healthy
tissue (positively correlated with FEV1).

where
∣∣∣{ ∂[πs]i

∂[ψs]j

}∣∣∣ is the determinant of the Jacobian which is easily computable (see Ap-

pendix C). This is a computationally appealing property for our optimization-based infer-
ence as we can easily plug it into the factorization of q(S, C).

Similar to the classical model in Section 2.2, the parameters of this model are learned
by maximizing the ELBO. All updates have a similar form as before except Wµ and Wσ,
for which we use stochastic gradient descent (see Appendix C for more details).

3. Experiments

In this section, we evaluate the proposed method for lung tissue subtyping on a large-scale
dataset from the COPDGene study (Regan et al., 2011). In Section 3.1, first we describe
the dataset we use for evaluation. Next, we explain our feature extraction pipeline and the
clinical measurements that we use for evaluation.

In Section 3.2, we demonstrate that the extracted features are informative by compar-
ing them with a set of reasonable baselines in terms of being able to predict the clinical
measurements. Next we compare the predictive performance of our framework, with that
of a topic model without discriminative features injection and a supervised topic model.

Finally, in Section 3.3, we visualize the subtypes on the subject and population levels
and explain the clinical interpretation of each subtype. We further justify the discovered
subtypes by studying the genetic heritability of each subtype.
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3.1. Setup

Feature Extraction Pipeline We apply our method to lung CT inspiratory images of
7,292 subjects from the COPDGene study (Regan et al., 2011). We first oversegment the
lung volume into spatially homogeneous regions that align with image boundaries using
the SLIC superpixel segmentation algorithm (Holzer and Donner, 2014). Then for each 3D
superpixel, we extract three different types of imaging features that previously have been
shown to be important in characterizing emphysema (Shaker et al., 2010; Sorensen et al.,
2012): (1) 32-bin intensity histogram features (Hist) following Sorensen et al. (2012), (2)
Haralick features (Hara) that encode image texture but also incorporate intensity (Vogl
et al., 2014), and (3) a rotationally invariant descriptor (sHOG) proposed by Liu et al.
(2014) which computes the histogram of gradients of pixels on a unit sphere using spherical
harmonics.

To construct a subject-level representation from the superpixel features, we assume the
local features of subject s are samples drawn from a probability distribution ps. To compute
the distribution embedding for each subject as our subject-level representation, we estimate
pairwise similarity between subjects’ distributions using KL-divergence. However, to avoid
imposing any kind of parametric assumptions for KL estimation, we use the nonparametric
KL estimation approach proposed by Schabdach et al. (2017). Our distribution embedding
pipeline is described in details in Appendix A.

Clinical Measurements To evaluate our subject-level representation, we use the rep-
resentation to predict a few clinical variables that are indicative of disease severity. More
specifically, we use the following measurements:

• Percent Predicted Forced Expiratory Volume in one second (FEV1 PP): A measure
of lung function which is the percentage of normal predicted values of FEV1 for
individuals in the population with similar age, height, weight, gender and ethnicity.
Lower values indicate more severe disease.

• Ratio of FEV1 to Forced Vital Capacity (FEV1/FVC): Forced Vital Capacity (FVC)
is the total amount of air an individual can exhale forcefully after taking the deepest
breath possible. This ratio represents the proportion of an individual’s vital capacity
that they can breathe out in one second.

• Global Initiative for Obstructive Lung Disease (GOLD): GOLD is a discrete value
derived from two Spirometry measurements and is between zero and four where zero
is used for people at risk (Normal Spirometry but Chronic Symptoms), 1-4 denote
Mild to Very Severe COPD. The -1 is used for subjects who have Preserved Ratio
Impaired Spirometry (PRISm), which indicates that they have reduced FEV1 while
having preserved FEV1/FVC.

• Distance Walked: The distance walked in 6 minutes that has been shown to be a good
indicator of disease severity in COPD patients (Dajczman et al., 2015).

We report R2 when evaluating the performance with respect to our continuous measure-
ments (i.e., FEV1 PP, FEV1/FVC, and Distance Walked). For GOLD, which is a discrete
but ordered measurement, we report accuracy and also the percentage of cases whose clas-
sification lay within one class of the true value (one-off) as well as exact value.
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3.2. Quantitative Evaluation of the Subtypes

In this section, we first show that our extracted features are informative by comparing
their predictive performance with that of a set of baselines. Next, we show incorporating
these features in our variational posterior approximation can improve the performance of
generative models. For the details of hyper-parameter setting and additional experiments,
including the sensitivity analysis with respect to the number of topics K see Appendix D.

Baselines For each task mentioned above we have a set of baselines. For evaluating
the predictive performance of our extracted features, we compare our method with two
baselines:

1. Low Attenuation Area below Hounsfield Unit of−950 on Inspiration CT image (%LAA-
950Insp) which is commonly used as a clinical measure of emphysema.

2. A subject-level representation learned by a traditional bag-of-words (BOW) model
which is the K−means algorithm.

We compare the discriminative performances of the three local image descriptors (i.e.,
Hara, Hist, Hist+sHOG) along with two methods of building the subject-level representation
(i.e., K−means and our Distribution Distance (KL) method). We separately train linear
regression models (via Ridge Regression) to predict FEV1 PP and FEV1/FVC from the
subject-level features (ts). We use the predicted values to compute the GOLD score1.

To evaluate the effect of incorporating these features in a generative model via our
encoder-decoder framework, we compare our method with two baselines:

1. Topic model with Gaussian observations: Note that the supervised topic models dis-
cussed in Section 1 are proposed for documents with discrete observations; hence, we
need to devise a topic model baseline that can handle gaussian likelihood and is com-
parable to our model. We choose Gaussian LDA (G-LDA) model (Das et al. (2015))
as our unsupervised topic model baseline.

2. Supervised topic model with Gaussian observations: We modify G-LDA model (Das
et al. (2015)) in a way that it can generate the disease severity ys given the per-subject
subtype proportions πs. More concretely, we assume ys ∼ N (µ(πs), σ

2) where µ is a
learnable function and σ2 is a hyperparameter.

After training the models, we compute the posterior mean of the subtype proportion
(i.e., Eq[πs|D]) on the test data for evaluation. These values are used to train linear
regression models predicting the disease severity measures.

Predictive Power of the Representation Table 2 demonstrates our approach outper-
forms the threshold-based approach (%LAA-950Insp) as well as BOW across all choices of
local image descriptors. While all three choices of local image descriptors perform equally
well when used by our method, there is significant variation in performances when BOW is
used. In the rest of the experiments, we opt to use Hist+sHOG as the local image features
for computing the subject-level representation due to the slight advantage in performance.

1. We pass the predicted values for these two quantities to a learned decision tree classifier to compute
GOLD score.
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Local Image Feature Subject-level Descriptor Exact Acc (Std dev) One-off Acc (Std dev)

Baseline %Low Attenuation Level (-950) 0.56 (0.03) 0.76 (0.02)

Hara
BOW (K-means) 0.47 (0.02) 0.71 (0.02)
Distribution Distance (KL) 0.58 (0.03) 0.83 (0.02)

Hist
BOW (K-means) 0.54 (0.04) 0.79 (0.01)
Distribution Distance (KL) 0.57 (0.03) 0.82 (0.01)

Hist+sHOG
BOW (K-means) 0.57 (0.03) 0.82 (0.01)
Distribution Distance (KL) 0.59 (0.03) 0.84 (0.01)

Table 2: Average classification accuracy of predicting GOLD 5 classes from subject-level descriptors.
Subject-level descriptors are computed from corresponding local image features in each row. Hara,
Hist, Hist+sHOG denote Haralick, Histogram, Histogram combined with Spherical Histogram of
Gradient descriptors respectively. Results are averaged across 5 cross-validation folds. One-off Acc
is the percentage of times the predictor was at most one-off in predicting GOLD score.

R2

Subject-Level Descriptor FEV1 PP FEV1/FVC FVC Distance Walked

%Low Attenuation Level (-950) 0.44 0.61 0.03 0.07
G-LDA (Das et al. (2015)) 0.35 0.49 0.13 0.12
Supervised G-LDA 0.34 0.51 0.13 0.21
Proposed Method (ts) 0.58 0.69 0.38 0.20

Table 3: Performance of predicting FEV1 PP, FEV1/FVC, FVC, and distance walked compared
across G-LDA, supervised G-LDA, our method (ts), and % Low Attenuation Level (-950) (classic)
subject-level descriptors using ridge regression. Our method outperforms the rest in almost all
metrics. For G-LDA , we use topic proportions inferred by the topic model (Das et al., 2015).
Supervised G-LDA is a supervised variant of the model proposed by Das et al. (2015) which assumes
the disease severity ys depends on the subtype proportions πs of subject s.

Evaluation of our encoder-decoder framework The results in Table 3 show that
our subject-level features, ts, outperform or perform on par with the baselines. The G-
LDA, without injected subject-level features ts, learns subtypes that are not predictive of
disease severity. Furthermore, the supervised G-LDA, improves the results but still does
not perform as well as our approach.

3.3. Clinical interpretation

Population-Level Interpretation To summarize the results of the topic model, we
compute the posterior distribution of zsn. The P (zsn = k|D) represents the posterior
probability of supervoxel n of subject s being assigned to subtype k which can be visualized
as a label mask. Examples of such masks are shown in Figure 2(b)subfigure for a few subjects
and subtypes. We register the label masks of all the subtypes to a common space to compute
the average distribution of each subtype across the population. Figure 2(a)subfigure shows
these average distributions for each subtype along with corresponding scatter plots denoting
the correlation between the proportion of the subtype and FEV1 PP. Each dot in the
scatter plot denotes one subject where y−axis corresponds to FEV1 PP and x−axis is the
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Figure 3: Subtype proportions averaged over subsets of the population with GOLD score values
PRISm, 0, 1, 2, 3, and 4.

average of the probabilities of that subtype over all supervoxels of the subject. A positive
correlation suggests that tissue type is healthy and negative correlation suggests a disease-
related subtype.

We also study the average distributions of the subtypes and their variations among pa-
tients with different GOLD scores. The result is shown in Figure 3. Each bar represents a
sub-population of patients with a particular GOLD score and colors within the bar repre-
sent the average proportion of a subtype within that sub-population. All bars have equal
sizes but the proportion of subtypes varies. The proportion of subtype 1 and 2 increase
as we move from PRISm to GOLD score 4 (indicating severely diseased). Subtype 8, in
contrast, decreases with increased severity. Subtype 5 is notable because even though it is
not significantly correlated with disease, it is prevalent in PRISm sub-population relative
to other GOLD scores.

Patient-Level Interpretation To have a better understanding of subtypes, we visual-
ize P (zsn = k|D) on lung CT’s of nine subjects for k = 1, 2, 8 which have the strongest
correlation with FEV1. Figure 2(b)subfigure shows that subtype 1 is found primarily on
pulmonary bullae and subtype 2 captures patients with peripheral bronchiolitis in patients
with severe pulmonary disease (i.e., Gold score ≥ 3). On the other hand subtype 8 is very
pronounced on the rind of three subjects with healthy lungs.

To get a clinical understanding of these subtypes we asked a clinical expert to inspect all
subtypes showing average and subject-level representation. Tissue subtypes 1, 2, 3, 4, and 10
are negatively correlated with FEV1 PP. Thus these subtypes are correlated with increased
disease severity. Tissue subtype 1 tends to characterize paraseptal emphysema and is often
found in regions containing pulmonary bullae. Subtype 1 tends to pick up low attenuation
areas on the surface. Subtype 2 is often indicative of peripheral bronchiolitis, picking up
peripheral rind linear opacities in the lung, in some cases blood vessels or lymphatics, as well
as tree-in-bud opacities. Subtype 3 predominantly captures different pathological features.
It is associated mostly with large high attenuation areas like scarring and vessels as well as
airways. Subtype 4 picks up on more preserved (i.e., less destruction) areas in patients with
emphysema. Subtype 10 is mostly related to the unexplained image statistics associated
with large high attenuation areas.
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Subtype h2 (%) SE (%) p-value

1 23.69 8.42 2.3e-03
2 23.37 8.29 1.8e-03
3 5.83 7.92 2.2e-01
4 9.96 8.26 1.1e-01
5 ≈ 0 8.17 5e-01
6 ≈ 0 8.38 5e-01
7 8.37 8.48 1.7e-01
8 18.74 8.34 1.1e-02
9 1.46 8.00 4.3e-01
10 2.16 8.00 3.9e-01

Table 4: Heritability of tissue subtypes. h2 measures the fraction of phenotypic variance (i.e.,
variance in subject subtype proportion) explained by the total genetic variance.

In contrast subtypes 5, 6, 7, 8, and 9 are negatively correlated with increased dis-
ease severity. Subtype 5 captures regions that are more relatively hyperattenuated than
surrounding regions. Subtype 6 picks up on some dimensional feature of the thorax, main-
taining a distance on structure – though it is not clear what it is picking up. This is also
true for subtype 7, which was difficult for the clinical expert to characterize. Subtypes 5,
6, and 7 tend to be attenuation agnostic. Subtype 8 is associated with more normal and
blotchy regions on the rind of the lung. Subtype 9 is characteristic of thicker peripheral
opacities and lines on the apex of the lung which might be indicative of higher diffusing
capacity.

Genetic Heritability To understand the genetic etiology of each subtype, we perform
the so-called genetic heritability analysis. In brief, the genetic heritability analysis studies
the correlation between a quantitive trait and genetic data by estimating the proportion of
the variance explained by genetic random effects. The variance ratio (h2) is estimated under
a linear mixed effect model where the fixed effects are nuisance variables, and the random
effect is the linear effect of the genotyped variants. The higher the h2, the stronger the
genetic contribution to the trait. For each subtype, we view the proportion as a quantitive
trait and estimate h2 using the Restricted Maximum Likelihood (REML) method using
GCTA software (Yang et al., 2010). We use age, gender, number of smoking packs per year,
and the first six principal components of the genetic kinship matrix as nuisance parameters
(fixed effect). The results are shown in Table 4. Subtype 1, 2, and 8 show significant
heritability of approximately 18 − 24%, providing strong evidence that these subtypes are
biologically driven. While subtypes 1, 2 have the strongest negative correlation with FEV1,
subtype 8 has the strongest positive correlation with the FEV1.

4. Discussion and Conclusion

In this paper, we proposed an approach which lets the practitioner incorporate the predictive
features into the posterior approximation of a generative model which is more amenable to
interpretation. We showed an application of our method to COPD, which is a highly
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heterogeneous disease. We viewed every patient as a mixture of different subtypes; hence,
a topic model is a proper generative model.

We showed that one could incorporate the discriminative information into the space of
the posterior distributions to avoid loss of predictive performance. The idea is that the
predictive model shares covariates relevant to prediction (ts) with the generative model.
Therefore, they have similar predictive performance. We inject ts into the approximation of
the latent variable’s posterior distribution. To make the inference computationally efficient,
we presented a specific transformation of ts that results in a closed-form parameterization
of the posterior distribution of the subtype proportion.

We apply our model on CT images of the COPDGene dataset. We first demonstrate
that our predictive features are more effective for disease severity prediction compared to the
standard K-means method . Table 2 shows that our approach achieves the best predictive
performance regardless of the input local image descriptor while there is significant varia-
tion in the performance of K-means. Furthermore, we validated the main idea of the paper
by empowering our variational posterior distribution with these predictive features. Table
3 shows that the vanilla topic modeling, which is fully unsupervised, completely loses dis-
criminative power. Making the topic model supervised by incorporating the disease severity
metrics directly into the generative model, improves the performance but this supervised
topic model still underperforms compared to our approach.

The posterior probability of the different latent random variables in our model provides
insight into the disease. Figures 3.1 visualizes the population-level and subject-level distri-
butions of the subtypes. However, not all inferred subtypes are aligned with the current
clinical understanding of the disease (e.g., subtypes six, seven, and ten). The fact that
subtype ten is positively correlated with FEV1 suggests that it represents healthy tissue.
We observed that the proportion of subtype five is higher in the PRISm sub-population
than the rest of the population (Figure 3). This is a promising area for further investigation
since the PRISm patients are difficult to characterize. However, this subtype does not show
a significant correlation with the genetic data. Interestingly, the most significant subtypes
in term of genetic heritability are the ones with the strongest correlation with FEV1. Un-
derstanding the biological etiology of those subtypes requires further causal analysis, which
is another avenue for future research.
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Norman Wolkove. Six minute walk distance is a predictor of survival in patients with chronic obstructive
pulmonary disease undergoing pulmonary rehabilitation. Canadian respiratory journal, 22(4):225–229,
2015.

Rajarshi Das, Manzil Zaheer, and Chris Dyer. Gaussian lda for topic models with word embeddings. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 795–
804, 2015.

Marc Decramer, Wim Janssens, and Marc Miravitlles. Chronic obstructive pulmonary disease. The Lancet,
379(9823):1341 – 1351, 2012. ISSN 0140-6736. doi: https://doi.org/10.1016/S0140-6736(11)60968-9. URL
http://www.sciencedirect.com/science/article/pii/S0140673611609689.

A. Depeursinge, D. Sage, A. Hidki, A. Platon, P. Poletti, M. Unser, and H. Muller. Lung tissue classification
using wavelet frames. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 6259–6262, Aug 2007. doi: 10.1109/IEMBS.2007.4353786.

L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages
524–531 vol. 2, June 2005. doi: 10.1109/CVPR.2005.16.

Lauren A Hannah, David M Blei, and Warren B Powell. Dirichlet process mixtures of generalized linear
models. Journal of Machine Learning Research, 12(6), 2011.

15

http://dl.acm.org/citation.cfm?id=2999325.2999436
http://dl.acm.org/citation.cfm?id=2999325.2999436
https://thorax.bmj.com/content/72/11/998
http://www.ncbi.nlm.nih.gov/pubmed/24234678
http://www.sciencedirect.com/science/article/pii/S0140673611609689


Short Title

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The
Journal of Machine Learning Research, 14(1):1303–1347, 2013.

M Holzer and R Donner. Over-Segmentation of 3D Medical Image Volumes based on Monogenic Cues.
Cvww, (JANUARY 2014):35–42, 2014.

Michael C Hughes, Gabriel Hope, Leah Weiner, Thomas H McCoy Jr, Roy H Perlis, Erik B Sudderth, and
Finale Doshi-Velez. Semi-supervised prediction-constrained topic models. In AISTATS, pages 1067–1076,
2018.
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