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Empowering Variational Inference with Predictive Features:
Application to Disease Suptypying

Abstract

Generative models, such as the probabilistic topic model, have been widely deployed for
various applications in the healthcare domain, such as learning disease or tissue subtypes.
However, learning the parameters of such models is usually an ill-posed problem and may
lose valuable information about disease severity. A common approach is to add a discrim-
inative loss to the generative model’s learning loss; finding a balance between two losses
is not straightforward. We propose an alternative way in this paper. We use distribution
embedding to construct patient-level representation, which is usually more discriminative
than the posterior parameters. We view the patient-level representation as an external
covariate. Then, we use the external covariates to inform the posterior of our generative
model. Effectively, we enforce the generative model’s approximate posterior to reside in
the subspace of the discriminative covariates. We illustrate this method’s application on
a large-scale lung CT study of Chronic Obstructive Pulmonary Disease (COPD), a highly
heterogeneous disease. We aim at identifying tissue subtypes by using a variant of a topic
model as a generative model. We evaluate the patient representation, the resulting topics
on the patient- and population-level. We also show that some of the discovered subtypes are
correlated with genetic measurements, suggesting that the identified subtypes characterize
the disease’s underlying etiology.

1. Introduction

Probabilistic models have been widely used to uncover hidden phenotypes for various health-
care applications, such as inferring rates of aging (Pierson et al., 2019), survival predic-
tion (Chen and Weiss, 2017), disease subtyping (Batmanghelich et al., 2015), and many
more (Chen et al., 2020). One of the challenges of applying the generative models in med-
ical applications is to ensure that the inferred parameters reflect the disease status; for
example, the proportion of abnormal tissue subtype in each patient should be correlated
with the clinical measurements reflecting the disease severity. We develop a model that
allows for incorporating external covariates into the posterior inference. The external co-
variates can be flexibility designed such that they are correlated with the disease severity.
For instance, these covariates can be features extracted from a neural network predicting
clinical measurements.

We apply our approach in the context of Chronic Obstructive Pulmonary Disease
(COPD), which is a highly heterogeneous disease (Castaldi et al., 2017b; Chen et al., 2013).
COPD is characterized by inflammation of the airway and destruction of the air sacs (em-
physema) (Viegi et al., 2007), and is one of the leading causes of death worldwide (Decramer
et al., 2012; World Health Organization, 2018). There are differences between risk factors of
different COPD subtypes (Shapiro, 2000), and hence understanding subtypes is important.
Respirometry measurement is used for the diagnosis of COPD; however, it cannot identify
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the underlying process of COPD. Hence, computed tomography (CT) imaging, which allows
direct qualitative and quantitative evaluation of tissue destruction, is routinely requested
for COPD patients. For example, phenotypic abnormality of emphysema is evident from
CT images (Park et al., 2008; Ross et al., 2016). Although there has been signi cant work
on de ning visual subtypes of emphysema (Song et al., 2017; Ross et al., 2016; Yang et al.,
2017; Hame et al., 2015; Uppaluri et al., 1997; Sorensen et al., 2010; Depeursinge et al.,
2007; Prasad et al., 2009) from CT images, there is signi cant intra-reader and inter-reader
variability of visual subtypes (Binder et al., 2016; Aziz et al., 2004). In this paper, we adopt

a variant of topic model to formulate the subtype discovery problem.

We view CT image of every patient as a mixture of K typical imaging patterns that
reoccur across the population. The proportion of the mixture is patient specic, but the
patterns are shared across the population. We call the typical pattern \tissue subtype."
Such a speci ¢c way of explaining data is reminiscent of topic models where the topics are
tissue subtypes. Hence, we use \subtype" and \topic" interchangeably. The distribution
of each patient's tissue subtype can be viewed as patient representation. The o -the-shelf
topic modeling is unsupervised, and it focuses on explaining the data and can easily miss
the disease-relevant information. We aim to address this issue in this paper. We enforce
the patient representation to be correlated with disease severity, hence indirectly encourage
subtypes to be disease-related. Instead of supervised topic modeling, we propose to inject
discriminative information in the form of covariates to the subtypes' inference model {.e.,
topics).

Related Works. Various unsupervised subtype discovery methods have been pro-
posed. Image-based phenotype discovery in CT images via spatial texture patterns have
been explored in emphysema (Yang et al., 2017; Hame et al., 2015). Ross et al. (2016)
propose a generative graphical model that incorporates patient trajectories to identify dis-
ease subtypes for COPD. Binder et al. (2016) present a generative model for unsupervised
discovery of visual subtypes for COPD along with inferring population structure. Their
method identi es sub-populations and clusters of image pattern simultaneously. One of
the underlying assumptions of these methods is that the patient population can be divided
into sub-populations, which is disputed for COPD (Castaldi et al., 2017a). Furthermore,
these methods are unsupervised { solving a highly ill-posed problem { hence, the resulting
subtypes may not re ect disease severity.

On the other hand, many supervised methods have been proposed to characterize the
severity of lung diseases from CT images (Uppaluri et al., 1997; Depeursinge et al., 2007,
Park et al., 2008; Prasad et al., 2009; Sorensen et al., 2010; Walsh et al., 2018). These
methods study local descriptors such as local binary pattern (LBP) (Sorensen et al., 2010),
wavelet and gray-level features (Depeursinge et al., 2007) as well as various predictive meth-
ods ranging fromk nearest neighbor classi er (Sorensen et al., 2010) to Support Vector
Machine (SVM) (Park et al., 2008). However, it is not clear how these methods can inform
subtype discovery.

Our model is closely related to supervised topic models (Mcauli e and Blei, 2008; Ko-
rshunova et al., 2019; Ren et al., 2019; Lacoste-Julien et al., 2009; Ramage et al., 2009;
Hughes et al., 2018) which generally add a discrminative loss term and predict the labels
from the topics or topic proportions. In healthcare applications other than COPD, Yang
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et al. (Yang et al., 2019) proposed a supervised topic modeling to characterize Alzheimer's
disease subtypes.
Our proposed approach is di erent from the previous works in three ways:

1. Rather than modeling the disease cohort into sub-populations, we view it as a contin-
uum where the continuum represents the proportion of subtypes. We aim at discov-
ering subtypes across the disease cohort; each patient is a mixture of these subtypes
which we assume are manifested in the CT images. The image signature of the sub-
types and the patient-speci ¢ mixture are modeled as latent variables in a probabilistic
generative model and, more speci cally, atopic model (Blei et al., 2003).

2. We assume that discriminative covariates are provided as extra information. We con-
struct such covariates based on a generic approach and without making any parametric
assumption over the model or probability distribution.

3. Unlike supervised topic modeling, our model does not require balancing the generative
and discriminative losses; hence, it has fewer hyper-parameters. We propose to inject
the covariates into the approximate posterior distribution.

We apply our method on a large scale COPD study showing good predictive performance
and clinically interpretable subtypes. Three of the subtypes are shown to have signi cant
genetic heritability. Furthermore, we compare our model with variants of topics models and
demonstrate that it outperforms them in terms of predictive performance.

Generalizable Insights about Machine Learning in the Context of Healthcare

This paper makes the following contributions which are generalizable to other applications
in healthcare:

" We develop a framework for generative disease subtyping that allows for incorporating
external covariates into the posterior distribution approximation. We propose an
e cient formulation for the posterior approximation that does not incur the extra
computational cost during inference and does not require a hyper-parameter to balance
supervised and unsupervised loss terms (as in supervised topic models). Although our
framework demonstrates promising results on topic maodels, it can be applied to other
probabilistic graphical models that benet from supervision (e.g., mixture models
(Hannah et al., 2011) or hidden Markov models (Moscovich and Chen, 2004)).

We apply our framework to disease subtyping based on CT images; however, its
use case is not limited to this data type and can be applied to any data type in
healthcare for which topic model have shown to be useful. Examples include, topic
model application to Electronic Health Records (EHR) (Li et al., 2020), transcriptomic
data (Valle et al., 2020), and histopathology data (Cruz-Roa et al., 2011).

Although we use covariates that are predictive of disease severity, our framework
is capable of incorporating other types of relevant side information such as clinical,
genetic, and demographic covariates.
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Figure 1: The schematic of our framework for two subjectss and s° with ts and tso as their corre-
sponding covariates. The encoderd( jx)) and decoder (p(x]j )) inside the green box explain data at
the supervoxel-level (word-level) while theg,, explains the subject-level data (.e., topic proportion).
The  and g are the parameter of the likelihood function and its corresponding variational param-
eter. The dashed line denotes sharing the parameters. See Table 1 for the de nitions of notations
used in this paper.

2. Method

To represent each subject, we adopt the Bag of Words (BOW) model (Fei-Fei and Perona,
2005) and represent a subjecs with a set, Xg, containing features extracted fromNg regions
covering the lung regions of the subject. This modeling choice allows us to accommodate
lungs of dierent sizes; the number of elements inXs can vary depending on the size of
the lungs. The BOW model assumes that features of every subjectxs, 2 X, are drawn
from subject-speci ¢ probability distributions, i.e., xsn  ps. We assume thatps belongs to
some abstract space of distributions {.e., ps 2 P). Our model can be viewed as an encoder-
decoder, where the decoder formulates the topic model, and the approximate posterior
distribution is formulated by the encoder. Our goal is to approximate the topics' posterior
distribution and not image reconstruction. Therefore, to explain features of each topic, we
use a parametric model with limited complexity whose expectations, entropy and marginal
can be computed e ciently.

In Sections 2.1 and 2.2, we explain our design for the decoder as well as the encoder
allowing arbitrary covariate information to be incorporated into inference. The schematic
of the framework is given in Fig. 1.

2.1. Decoder

We rst explain the probabilistic graphical model that de nes the decoder (i.e., generative
model). Our model is based on topic modeling, where the topic parameters correspond to
the population-level parameters, and document-speci ¢ topic proportions correspond to the
subject-level distribution of subtypes. In the following, we discuss the modeling assumptions
in detail.

Population-Level Model The model assumes that there ar& tissue types,topics, that
are shared across subjects in the population. We usea-dimensional Gaussian distribution
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Decoder
S | Total number of subjects.
K | Total number of subtypes.
Ns | Number of supervoxels in subject s.
Xsn | Image descriptor of supervoxel n in subject s.
Xs | Set of all image features for subjects, (Xsn 2 Xs).
Zsn | Subject-speci ¢ subtype that generates super-voxel n in subject s.
s | Proportions of subtypes in subject s.
k | Parameters of the likelihood (e.g., mean  and
covariance matrix) of image descriptors for population-level
subtype k.
Stick-breaking proportions for the Dirichlet Process which de nes .
Concentration parameters of the stick-breaking distribution
for
Encoder
"sn Parameters of the variational posterior for zsn
I ¢ | Parameters of the variational posterior for s.
k | Parameters of the variational posterior for .
Parameters encoding the posterior distribution of
ts | Subject-level feature vector.
W | Parameters encoding the posterior topic proportions .
hss () | Stick-breaking function.
s | Unnormalized subject-level topic proportions.

Table 1: Summary of the notation used for the decoder (i.e., generative model) and encoder (.e., variational
Bayes posterior approximation) in our proposed framework.

with mean vector 2 RP and covariance matrix 2 R® RP to model the features of
the topic k. For computational reasons, we also assume a conjugate prior for, and ,

k=0 ko &) NW();

where NIW( ) is the Normal-Inverse-Wishart distribution with hyper-parameter . Note
that ; « are random variables not parameters; hence, we aim at estimating a posterior
distribution not a point estimate. For notational brevity, let ¢ =( «; «).

Subject-Level Model For subjects, s=[ s1; ; skl andfzsngwj1 are latent random
variables denoting the proportion of topics and the allocation of the supervoxels to the topics
(ie., zsn 2 [1 K1) respectively:

N Dir( 1; k)
Zsn) s Cat( s); (1)
XsnjZsn; f kQE:l N ( 2z zen)s

where the ¢ follows the Dirichlet distribution, Cat( ) represents a categorical distribution
with the topic proportion s, and zgy = k indicates supervoxeln of subject s follows the
local image descriptor of topick. The 's are concentration parameters. If ('s are greater
than one, the topics distribution becomes more disperse (less sparse).

To avoid tuning K hyper-parameters for 1 to g, we follow the truncated Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006), and assume is generated by the so-called
\stick-breaking" construction,
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k= k(@ ) (2)
j<k

where Beta(; ) indicates the Beta distribution. Such construction allows for controlling
the sparseness of the topics distribution with a single hyper-parameteri(e., ) rather than
K. Similar to the approach introduced by Bryant and Sudderth (2012), we choose a large
enoughK and allow the actual number of topics to be discovered from data.

Overall Decoder Model For notational convenience, we de neD = X sg5_, to be all
image data, S = fzgn; sg§:1 to be all subject-level latent variables, andC= f ; gto be
all population-level latent variables. The joint distribution of all random variables can be
written as follows,

Y Y
P(D;S;O=p( j ) p(si ) PXsnjzsnif kGP(Zsn s):

S sin

2.2. Encoder

We propose to incorporate external covariates into the estimation of the posterior distribu-
tion. If the covariates are highly correlated with the disease severity, the inferred subtypes
will respect the discriminative signal about the disease severity. Our proposed approach is
general and can incorporate any external covariate depending on the application. We ude
to denote the covariate features. First, we explain the classical approach, and then explain
our method to incorporate ts.

Variational Bayes (VB) Approximate of the Posterior We seek the true posterior
distribution of the model parameters,

r P(D;S;0

PSICID) = RO 5 s 0 dsdc

3)

Exact computation of the posterior is computationally intractable since the denominator is
hard to compute. Therefore, Variational Bayes (M. Blei et al., 2016; Jordan et al., 1999)
approximates the posterior by maximizing the Evidence Lower Bound (ELBO) with respect
to g,

r;;%xL(q); L(g), Eq[lnp(D;S; 0] Eqling(S;O]; (4)

where g 2 Q is an approximate distribution from the family of computationally e cient
probability densities Q. As it is common in mean- eld variational inference (Peterson and
Anderson, 1987; Jordan et al., 1999; Ho man et al., 2013; M. Blei et al., 2016), we assume
the following form for the approximate posterior, q( ),

Y \'% Y
Q:qS;09=9a(; ) d si's) dzsn:' sn) Al ki k) 5)
s FAM M | S
subject-level spatial level population-level
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where |, ' sy, «, and! g are the variational parameters corresponding to the random
variables , zsn, «k, and s, respectively.

We use the variational parameters ofg(S; C) to approximate the posterior distribution of
the population-level subject-leve] and spatial level variables. Speci cally, we approximate
(1) the posterior distribution of  's as the image descriptors of each subtype (topic), (2) the
posterior distribution of ¢ as the proportion of subtypes per subject and (3) the posterior
distribution of zs.. that visualizes the spatial distribution of the subtypes within the lung of
patient s. The exact parametric form for each term is given in Appendix C.

Incorporating the Covariates into Posterior Approximation In the previous sec-
tions, we described the standard topic model construction and the corresponding family
of variational distributions used to approximate the posterior of the latent variables in the
model. The standard inference method for the topic modeling does not allow for incorporat-
ing the external covariates. We de ne a new family of approximate posterior distributions,
QO that allows for the external covariates without incurring an extra computational cost.

Unlike the rest of the variables, s is de ned at the subject-level,characterizing the topics
proportion for subject s. The tg is also a subject-speci ¢ covariate. Hence, we introduce
ts to the posterior of the 5. To do that, we use tg, the subject-speci ¢ representation,
to encode the subject-level latent variable. In other words, we usés to parameterize the
variational posterior for s: g( sjts; W), whereW = fW ;W gis a new parametrization
of the latent variables . Note that previously we had di erent variational parameters ! ¢
for each subject, we now have one set of parametel shared across all subjects.

We model g( s) implicitly by sampling from a Gaussian distritwtion and passing the
samples through a function to normalize them to a simplex (€., [ sk = 1). Similar
to the idea of reparameterization trick in Variational Autoencoder (VAE) (Kingma and
Welling, 2013), we parameterize the mean and the variance of the Gaussian by a neural
network. However, instead of inputting the original image, we use the subject-level repre-
sentation, tg, as input:

N (Ol «)
s = (ts; W )+ (ts; W )
s = hsg( s); (6)

where (ts;W ) and (ts;W ) are neural networks computing the mean and variance
vector of ¢, respectively. The hsg() is a function transforming the unbounded val-
ues of ¢ drawn from a Gaussian distribution to a random variable on a simplex, i.e.,
hsg : RX ! K. Many choices are possible fohsg (), such as thesoftmax function. How-
ever, computing the probability density of the transformed random variable is not always
straightforward. Here, we choose the following form that enables us to have a closed-form
probability density for ¢ (Linderman et al., 2015), .

hsg( s): sk = ( s si); (7)

j<k

where () denotes the logistic function. The ¢, which is the result of a change of variable,
has the following probability density,

@ st

A sitss W)= N( s ;diag( ?)) aJ ;

(8)
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Figure 2: (a) Odd Rows: Pearson correlation between proportion of subtype and FE\{. The x-
and y-axis are the subtype proportion and FEV; respectively. Even Rows: Visualization of spatial
average of the learned subtypes across the population shown on a coronal slice of a lung atlas. (b)
Subtypes 12, and 8 depicted on a set of nine patients.Subtypes land 2 are correlated with increase

in severity of COPD (negatively correlated with FEV ;), whereassubtype 8 appears to be healthy
tissue (positively correlated with FEV 7).

n 0]

where g—z}; is the determinant of the Jacobian which is easily computable (see Ap-

pendix C). This is a computationally appealing property for our optimization-based infer-
ence as we can easily plug it into the factorization ofg(S; C).

Similar to the classical model in Section 2.2, the parameters of this model are learned
by maximizing the ELBO. All updates have a similar form as before exceptWw and W
for which we use stochastic gradient descent (see Appendix C for more details).

3. Experiments

In this section, we evaluate the proposed method for lung tissue subtyping on a large-scale
dataset from the COPDGene study (Regan et al., 2011). In Section 3.1, rst we describe
the dataset we use for evaluation. Next, we explain our feature extraction pipeline and the
clinical measurements that we use for evaluation.

In Section 3.2, we demonstrate that the extracted features are informative by compar-
ing them with a set of reasonable baselines in terms of being able to predict the clinical
measurements. Next we compare the predictive performance of our framework, with that
of a topic model without discriminative features injection and a supervised topic model.

Finally, in Section 3.3, we visualize the subtypes on the subject and population levels
and explain the clinical interpretation of each subtype. We further justify the discovered
subtypes by studying the genetic heritability of each subtype.
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